
S. Mishra
L. Scarabosio
J. Sukys

Spring Term 2014

Numerical Methods for Partial
Differential Equations

ETH Zürich
D-MATH

Homework Problem Sheet 4

Introduction. The first three problems of this assignment concern elliptic PDEs.
The first two problems are fully theoretical and are aimed at making you more familiar with some
formulas and properties that you have already used or seen at the lecture. The third problem
tackles the discretization of the Poisson equation with a new kind of boundary conditions, the
so-called Robin boundary conditions.
Finally, the fourth problem faces the discretization of a one-dimensional parabolic problem.

Problem 4.1 Green’s Formula (Core problem)
To derive the variational formulation from a boundary value problem for a partial differential
equation we needed multi-dimensional integration by parts as expressed through Green’s first
formula. In this problem we study the derivation of Green’s formula, thus practicing elementary
vector analysis and the application of Gauss’ theorem.

(4.1a) Prove Green’s formula for Ω ⊂ R2, given by

−
∫
Ω

∇ · j v dx = −
∫
∂Ω

j · n v dS +

∫
Ω

j · ∇ v dx, (4.1.1)

where j ∈ C1
pw(Ω)

2 and v ∈ C1
pw(Ω).

HINT: Use Gauss’ theorem ∫
Ω

∇ · F dx =

∫
∂Ω

F · n dS,

where F ∈ C1
pw(Ω)

2.

Solution: The vectorized product rule takes the form

∇ · (jv) = ∇ · j v +∇v · j,

which, when integrated, is∫
Ω

∇ · (jv) dx =

∫
Ω

∇ · j v dx+

∫
Ω

∇v · j dx.

The first integral fits Gauss’ theorem, so we get∫
∂Ω

j · n v dS =

∫
Ω

∇ · j v dx+

∫
Ω

∇v · j dx

which is what we wanted to show.

Problem Sheet 4 Page 1 Problem 4.1

(4.1b) Use equation (4.1.1) to prove the formula

−
∫
Ω

∆u(x)v(x) dx =

∫
Ω

∇u(x) · ∇v(x) dx−
∫
∂Ω

∂u

∂n
(x)v(x) dS(x)

for Ω ⊂ R2 and u, v ∈ H1(Ω).

Solution: Considering that ∆u = ∇ · ∇u, this formula is an immediate consequence of (4.1.1)
when taking j = ∇u.

Problem 4.2 Galerkin Orthogonality and energy norm (Core problem)
Let a(·, ·) be a continuous, coercive and positive (i.e. with a(v, v) = |a(v, v)| ≥ 0 for all v ∈ V)
but not necessarily symmetric bilinear form on a function space V and let ℓ(·) be a continuous
linear functional on V . Let u be the exact solution to the variational problem

u ∈ V, a(u, v) = ℓ(v) ∀ v ∈ V, (4.2.1)

and let uN be the FE solution in a finite dimensional subspace VN ⊂ V , given by

uN ∈ VN , a(uN , vN) = ℓ(vN) ∀ vN ∈ VN .

(4.2a) Show that the Galerkin orthogonality

a(u− uN , vN) = 0 (4.2.2)

holds.

Solution:

a(u− uN , vN) = a(u, vN)− a(uN , vN) = ℓ(vN)− ℓ(vN) = 0.

(4.2b) If a(·, ·) is symmetric, then a(v1, v2) for all v1, v2 ∈ V defines a scalar product on V .
Show that this is a valid definition of scalar product

Solution: We have to verify that the properties in the definition of scalar product are fulfilled.
The properties are bilinearity and symmetry and positive definitness, and they follow directly
from the assumptions on a(·, ·).

The scalar product a(v1, v2) induces a norm on V defined by

∥v∥a =
√

a(v, v) ∀v ∈ V,

called the energy norm.

For the rest of this problem we assume the bilinear form to be symmetric, so that the energy norm
is well defined.

Problem Sheet 4 Page 2 Problem 4.2

(4.2c) Show that the norms ∥·∥a and ∥·∥V are equivalent.

HINT: Two norms ∥·∥1 and ∥·∥2 on a space V are equivalent if there exist two constants
C1, C2 > 0 such that

C1∥v∥2 ≤ ∥v∥1 ≤ C2∥v∥2 ∀v ∈ V.

HINT: Use the properties of the bilinear form.

Solution: From the coercivity and the continuity of a(·, ·) we get:

α∥v∥2V ≤ ∥v∥2a ≤ ν∥v∥2V ∀v ∈ V,

where α is the coercivity constant and ν the continuity constant. Taking the square root we get
the result with C1 =

√
α and C2 =

√
ν.

The Galerkin orthogonality property (4.2.2) together to the property VN ⊂ V (characteristic
of Galerkin discretization schemes) show that the Finite Element solution uN is the orthogonal
projection of u on VN when using a(·, ·) as scalar product. This justifies the following statement.

(4.2d) Show that uN is the best approximation in VN of u with respect to the energy norm ∥·∥a
induced by a(·, ·), i.e. infvN∈VN

∥u− vN∥a = ∥u− uN∥a.

Solution:

a(u− uN , u− uN) = a(u− vN , u− uN) + a(vN − uN , u− uN)︸ ︷︷ ︸
=0 for Galerkin orthog + symmetry

= a(u− vN , u− vN) + a(u− vN , vN − uN) =

= a(u− vN , u− vN)− a(vN − uN , vN − uN) + a(u− uN , vN − uN)︸ ︷︷ ︸
=0 for Galerkin orthog

.

Thus
∥u− vN , v − uN∥2a = ∥u− uN , u− uN∥a + vN − uN , vN − uN);

since the two addends on the right-handside are both positive, the infimum is achieved when
∥vN − uN , vN − uN∥a = 0 and thus vN = uN .

We now want to compare Finite Element solutions of the same problem when using different and
nested Finite Element spaces.

(4.2e) Show that a(u− uN , u− uN) = a(u, u)− a(uN , uN).

Solution:

a(u− uN , u− uN) = a(u, u− uN)− a(uN , u− uN)︸ ︷︷ ︸
=0 (using symmetry!)

= a(u, u)− a(u, uN)

= a(u, u)− a(u− uN , uN)︸ ︷︷ ︸
=0

−a(uN , uN).

(4.2f) Let VN ⊂ VN ′ . Show that a(u − uN , u − uN) ≥ a(u − uN ′ , u − uN ′), where uN ′ is the
Finite Element solution given by

uN ′ ∈ VN ′ , a(uN ′ , vN ′) = f(vN ′) ∀ vN ′ ∈ VN ′ .

Problem Sheet 4 Page 3 Problem 4.2

Solution: Since VN ⊂ VN ′ , we have, using (4.2e),

0 ≤ a(uN ′ − uN , uN ′ − uN) = a(uN ′ , uN ′)− a(uN , uN),

and hence a(uN , uN) ≤ a(uN ′ , uN ′).

Using (4.2e) two times we obtain

a(u− uN , u− uN) = a(u, u)− a(uN , uN)

≥ a(u, u)− a(uN ′ , uN ′) ≥ a(u− uN ′ , u− uN ′).

Alternatively, the claim follows just considering what proved in task (4.2d): since VN ⊂ VN ′ , the
infimum over VN can only be greater or equal than the infimum over VN ′ .

(4.2g) Let uL and uQ be the Finite Element solutions to (4.2.1) when using respectively linear
and quadratic Finite Elements on the same mesh.
Show that

∥u− uQ∥a ≤ ∥u− uL∥a.

Solution: This is an immediate consequence of (4.2f) since, when using the same mesh, the
space of piecewise linear polynomials is a subspace of piecewise quadratic polynomials.

Problem 4.3 Heat Conduction with Reaction Term and Convective Cooling
This exercise involves the Galerkin discretization of a particular 2nd-order linear elliptic boundary
value problems by means of linear Lagrangian finite elements. In this problem you will need most
of the routines that you should have implemented for the previous assignment.

Let Ω ⊂ R2 be a polygonal domain. In this problem we consider the boundary value problem

−∆u = f in Ω, (4.3.1)
∇u(x) · n(x) + γ(x)u(x) = 0 on ∂Ω, (4.3.2)

where, f ∈ L2(Ω) and γ is a uniformly positive (→)continuous function on the boundary ∂Ω.
Here we encounter so-called Robin boundary conditions.

We solve (4.3.1)–(4.3.2) approximately by means of Galerkin discretization based on piecewise
linear Lagrangian finite elements on triangular meshes of Ω.

(4.3a) Derive the variational formulation of the boundary value problem (4.3.1)–(4.3.2). Do
not forget to specify the trial and test spaces.

HINT: The boundary conditions are now contained in the bilinear form, not the trial and test
spaces (that is, they are natural).

HINT: If u, v ∈ H1(Ω), then
∫
∂Ω

uv dS is well defined.

Solution: Like before, we multiply with a test function v (that is not generally zero on the
boundary), and integrate:

−
∫
Ω

v(x)∆u(x) dx = −
∫
∂Ω

v(x)∇u(x) · n(x) dx+

∫
Ω

∇u(x) · ∇v(x) dx

=

∫
∂Ω

γ(x)u(x)v(x) dx+

∫
Ω

∇u(x) · ∇v(x) dx.

Problem Sheet 4 Page 4 Problem 4.3

So the variational formulation is to find u ∈ H1(Ω) so that a(u, v) = ℓ(v) for all v ∈ H1(Ω),
where

a(u, v) =

∫
∂Ω

γ(x)u(x)v(x) dx+

∫
Ω

∇u(x) · ∇v(x) dx,

and
ℓ(v) =

∫
Ω

f(x)v(x) dx.

(4.3b) Argue why the variational problem obtained in subproblem (4.3a) has a unique solution
(proof of existence is not required).

Solution: The bilinear form is coercive. Indeed, assume a(u, u) = 0 for some u, so that∫
∂Ω

γ(x)|u(x)|2 dx+

∫
Ω

∥∇u(x)∥2 dx = 0.

Since γ is uniformly positive, this means that both integrals must be zero. First, ∥∇u(x)∥ = 0
everywhere, so u is constant. But we also know that u = 0 on the boundary (from the first
integral), so u must be zero everywhere.

(4.3c) Assume that γ ≡ const. Compute the element (stiffness) matrix for the bilinear form
from subproblem (4.3a) and linear finite elements on a triangle K analytically in terms of the
area |K| and edge lengths |ei|. You can denote by A∆

K the part of the matrix associated to the
gradients, without computing it explicitely.

HINT: You may take knowledge of the edge lengths and angles of the triangle for granted. Special
cases will occur if one or more edges are part of the boundary ∂Ω!

Solution: The Laplacian part is already given. We concern ourselves here with the boundary
term.

We compute the contributions of the boundary integral to the local Galerkin matrix. Suppose the
edge between vertices i and j is part of ∂Ω. Then this edge will give a contribution to Ai,i, Aj,j ,
Ai,j and Aj,i, which we can compute by transformation to [0, 1]. On this unit interval, the basis
functions are of course x and 1− x:

h

∫ 1

0

γx2 dx =
hγ

3
, h

∫ 1

0

γx(1− x) dx =
hγ

6
,

where h is the length of the edge in question.

Thus, the local Galerkin matrix will look like this:

A = A∆
K + δ(1,2)

|e(1,2)|γ
6

2 1
1 2

+ δ(2,3)
|e(2,3)|γ

6

 2 1
1 2

+ δ(1,3)
|e(1,3)|γ

6

2 1

1 2

,

where A∆
K is the Laplacian local Galerkin matrix, |e(i,j)| is the length of edge (i, j), and δ(i,j) = 1

if the edge (i, j) is part of δΩ, and δ(i,j) = 0 when not.

(4.3d) Now solve subproblem (4.3c) for general continuous γ ∈ C0(∂Ω), but using the one-
dimensional trapezoidal rule for the approximate evaluation of integrals along edges of K that
are contained in ∂Ω.

Problem Sheet 4 Page 5 Problem 4.3

HINT: Contributions from the boundary terms will only enter the diagonal of the element matri-
ces.

Solution: According to the trapezoidal rule, the integrals from (4.3c) read

h

∫ 1

0

γ(x)x2 dx ≈ hγ(1)

2
, h

∫ 1

0

γ(x)(1− x)2 dx ≈ hγ(0)

2
, h

∫ 1

0

γx(1− x) dx ≈ 0.

So we get

A = AL + δ(1,2)
|e(1,2)|

2

γ1
γ2

+ δ(2,3)
|e(2,3)|

2

 γ2
γ3

+ δ(1,3)
|e(1,3)|

2

γ1

γ3

,

where we have used the notation γi = γ(ai).

(4.3e) Implement a function

Aloc = STIMA LaplRobin LFE(Vertices, BdEdges, EHandle)

that returns the element matrix for the bilinear form from subproblem (4.3a) and linear La-
grangian finite elements. The 1D trapezoidal rule is to be used for the evaluation of integrals
along edges on ∂Ω, see subproblem (4.3d).

Here Vertices is a 3 × 2-matrix passing the coordinates of the triangle’s vertices in its rows
and BdEdges is a possibly empty column vector of integer indices telling which edges of the
current triangle are located on the boundary. The convention is that edge no. i is opposite to
vertex i. Finally, Ehandle passes a handle to the function γ.

HINT: You may use the STIMA Heat LFE function that you already implemented.

Solution: See Listing 4.1.

Listing 4.1: Implementation for STIMA LaplRobin LFE

1 f u n c t i o n Aloc = STIMA_LaplRobin_LFE(Vertices, BdEdges,
EHandle)

2

3 % Preallocate memory

4 Aloc = STIMA_Heat_LFE(Vertices,P7O6(),@(x) 1);
5

6 % Boundary

7 f o r i = BdEdges’
8 verts = setdiff(1:3, i);
9 h = norm(Vertices(verts(1),:) - Vertices(verts(2),:));

10 gamma1 = EHandle(Vertices(verts(1),:));
11 gamma2 = EHandle(Vertices(verts(2),:));
12 Aloc(verts(1),verts(1)) =...
13 Aloc(verts(1),verts(1)) + h/2 * gamma1;
14 Aloc(verts(2),verts(2)) =...
15 Aloc(verts(2),verts(2)) + h/2 * gamma2;
16 end

Problem Sheet 4 Page 6 Problem 4.3

17

18 end

(4.3f) Create a copy of assemMat LFE.m and rename it to assemMatLapRobin LFE.m.
Modify this function so that it can provide a global assembly routine that can accommodate the
function STIMA LaplRobin LFE implemented in subproblem (4.3e). The syntax of your new
function should be

A = assemMatRobin LFE(Mesh,gammaHandle) ,

where gammaHandle is a function implementing γ(x). Your implementation can take for
granted that complete edge information is available for Mesh and that its BdFlags field is
initialized.

HINT: By convention, edges on the boundary have a negative boundary flag, and interior edges
have zero or positive values.
The field Mesh.Vert2Edge may come in hand.

Solution: See Listing 4.2.

Listing 4.2: Implementation for assemMatRobin LFE.
1 f u n c t i o n A = assemMatLapRobin_LFE(Mesh, gammaHandle)
2

3 % Initialize constants

4 nElements = s i z e(Mesh.Elements,1);
5

6 % Preallocate memory

7 I = z e r o s(9*nElements,1);
8 J = z e r o s(9*nElements,1);
9 A = z e r o s(9*nElements,1);

10

11 % Assemble element contributions

12 loc = 1:9;
13 f o r i = 1:nElements
14

15 % Extract vertices of current element

16 idx = Mesh.Elements(i,:);
17 Vertices = Mesh.Coordinates(idx,:);
18

19 % Extract boundary data

20 % BdEdges should contain 1 if the edge opposite of

21 % vertex 1 is a boundary edge. If BdEdges is empty

22 % then the element is in the interior.

23 BdEdges = [];
24 i f Mesh.BdFlags(Mesh.Vert2Edge(idx(2),idx(3))) < 0
25 BdEdges = [BdEdges; 1];
26 end
27 i f Mesh.BdFlags(Mesh.Vert2Edge(idx(1),idx(3))) < 0

Problem Sheet 4 Page 7 Problem 4.3

28 BdEdges = [BdEdges; 2];
29 end
30 i f Mesh.BdFlags(Mesh.Vert2Edge(idx(1),idx(2))) < 0
31 BdEdges = [BdEdges; 3];
32 end
33

34 % Compute element contributions

35 Aloc = STIMA_LaplRobin_LFE(Vertices,BdEdges,
gammaHandle);

36

37 % Add contributions to stiffness matrix

38 Iloc = idx(ones(3,1),:)’;
39 I(loc) = Iloc(:);
40

41 Jloc = idx(ones(1,3),:);
42 J(loc) = Jloc(:);
43

44 A(loc) = Aloc(:);
45 loc = loc+9;
46 end
47 A = s p ar se(I,J,A);
48

49 re turn

(4.3g) Make a copy of main LFE.m called main LFE robin.m. Modify this script so that
it computes a linear finite element solution of (4.3.1)–(4.3.2) making use of the new function
assemMatRobin LFE from subproblem (4.3f).

HINT: This time you can solve the linear system directly, i.e. U = A\L, because without Dirich-
let boundary conditions, all nodes of the mesh carry active basis functions.

Solution: See Listing 4.3.

Listing 4.3: Implementation for main LFE robin

1 f u n c t i o n [N, l2, h1] = main_LFE_robin(Mesh)
2

3 % Initialize constants

4 F_HANDLE = @(x,varargin) 1;
5 E_HANDLE = @(x,varargin) 1;
6

7 % Assemble stiffness matrix and load vector

8 A = assemMatRobin_LFE(Mesh, E_HANDLE);
9 L = assemLoad_LFE(Mesh,P7O6(),F_HANDLE);

10

11 % Solve the linear system

12 U = A\L;
13

14 % Plot solution

Problem Sheet 4 Page 8 Problem 4.3

15 plot_LFE(U,Mesh);co l o r b a r;
16

17 % Output

18 N = s i z e(Mesh.Coordinates,1);
19 l2 = L2Err_LFE(Mesh, U, P7O6(),...
20 @(x,varargin)z e r o s(s i z e(x,1),1));
21 h1 = H1SErr_LFE(Mesh, U, P7O6(),...
22 @(x,varargin)z e r o s(s i z e(x,1),2));
23

24 end

(4.3h) Solve and plot the linear finite element solution of (5.2.1) with boundary conditions
(4.3.2) based on the meshes found in the zip-file Polygon.zip. Use γ ≡ 1.

Compute the L2- and H1-seminorm of each solution, and plot these quantities vs. the dimension
N of the finite element spaces.

HINT: You can compute the norms of the solutions by calling L2Err LFE and H1SErr LFE
with FHandle being the zero-function.

Solution: See Listing 4.3 and Listing 4.4 for the code. The plots can be found in Figure 4.1.

Listing 4.4: Implementation for driver robin

1 N = z e r o s(5,1);
2 L2 = z e r o s(5,1);
3 H1 = z e r o s(5,1);
4

5 f o r nv = 2:6,
6 Mesh = load([’Polygon_’ num2str(nv) ’.mat’]);
7 [n,l2,h1] = main_LFE_robin(Mesh);
8 N(nv-1) = n;
9 L2(nv-1) = l2;

10 H1(nv-1) = h1;
11 end
12

13 f i g u r e(1); semi logx(N, L2);
14 f i g u r e(2); semi logx(N, H1);

Listing 4.5: Testcalls for Problem 4.3
1 f p r i n t f(’\n##STIMA_LaplRobin_LFE’);
2 STIMA_LaplRobin_LFE([0 0; 1 0; 0 1], [1; 3], @(x)sum(x.ˆ2,2))
3

4 c l e a r Mesh
5 Mesh = load([’Polygon_’ num2str(2) ’.mat’]);
6

7 f p r i n t f(’\n##assemMatRobin_LFE’);
8 assemMatRobin_LFE(Mesh, @(x)sum(x.ˆ2,2))

Problem Sheet 4 Page 9 Problem 4.3

10
1

10
2

10
3

10
4

0.334

0.336

0.338

0.34

0.342

0.344

0.346

(a) L2-norm versus N

10
1

10
2

10
3

10
4

0.2

0.205

0.21

0.215

0.22

0.225

0.23

(b) H1-seminorm versus N

Figure 4.1: Plots for subproblem (4.3h).

Listing 4.6: Output for Testcalls for Problem 4.3
1 >> test_call
2

3 ##STIMA_LaplRobin_LFE
4 ans =
5

6 1.0000 -0.5000 -0.5000
7 -0.5000 1.7071 0
8 -0.5000 0 1.2071
9

10 ##assemMatRobin_LFE
11 ans =
12

13 (1,1) 1.3436
14 (6,1) -0.5580
15 (7,1) -0.5200
16 (8,1) -0.2656
17 (2,2) 1.5040
18 (8,2) -0.3096
19 (9,2) -0.2684
20 (10,2) -0.4820
21 (3,3) 1.8477
22 (10,3) -0.5217
23 (11,3) -0.5652
24 (4,4) 1.9935
25 (6,4) -0.2294
26 (9,4) -0.2572
27 (11,4) -0.6167
28 (12,4) -0.3152
29 (5,5) 1.0606
30 (7,5) -0.6129
31 (12,5) -0.1935
32 (1,6) -0.5580

Problem Sheet 4 Page 10 Problem 4.3

33 (4,6) -0.2294
34 (6,6) 3.6617
35 (7,6) -0.4417
36 (8,6) -0.5524
37 (9,6) -0.8640
38 (12,6) -1.0161
39 (1,7) -0.5200
40 (5,7) -0.6129
41 (6,7) -0.4417
42 (7,7) 1.9506
43 (12,7) -0.3246
44 (1,8) -0.2656
45 (2,8) -0.3096
46 (6,8) -0.5524
47 (8,8) 1.8610
48 (9,8) -0.6085
49 (2,9) -0.2684
50 (4,9) -0.2572
51 (6,9) -0.8640
52 (8,9) -0.6085
53 (9,9) 3.6930
54 (10,9) -0.9173
55 (11,9) -0.7776
56 (2,10) -0.4820
57 (3,10) -0.5217
58 (9,10) -0.9173
59 (10,10) 2.4882
60 (11,10) -0.0431
61 (3,11) -0.5652
62 (4,11) -0.6167
63 (9,11) -0.7776
64 (10,11) -0.0431
65 (11,11) 2.5556
66 (4,12) -0.3152
67 (5,12) -0.1935
68 (6,12) -1.0161
69 (7,12) -0.3246
70 (12,12) 2.1788

Problem 4.4 Finite differences and implicit Euler for the heat equation
Let Ω := (0, 1) and consider a one-dimensional heat equation (an example of a parabolic PDE)
with homogeneous Dirichlet boundary conditions:

∂u

∂t
−∆u = f(x) in (0, T]× Ω, (4.4.1)

u = 0 on (0, T]× ∂Ω, (4.4.2)
u = u0 on {0} × Ω. (4.4.3)

The initial data is given by u0(x) = sin(πx), and we will mainly consider the homogeneous case,
i.e. f(x) ≡ 0. The aim of this exercise is to discretize the above heat equation using central finite

Problem Sheet 4 Page 11 Problem 4.4

differences coupled with the implicit Euler time-stepping scheme.

To discretize the spatial domain Ω = (0, 1), we subdivide the interval [0, 1] in N + 1 subintervals
using equispaced grid points {x0 = 0, x1, . . . , xN , xN+1 = 1}.
The discretized (in space domain Ω) problem can be written as the following linear system,

∂

∂t
u+Au = L, (4.4.4)

where A is a N ×N matrix, L a N × 1 vector and u the N × 1 vector containing the unknowns
u(xj), j = 1, . . . , N , i.e. denoting the values of the function u at the grid points.
Let us denote by h = |x1 − x0| the mesh size.

(4.4a) Write the matrix A and the right-handside L in (4.4.4), which will be analogous as in
the case of Laplace equation you had in Problem 1 of the Exercise sheet 1.

HINT: Careful with the factor
1

h2
.

Solution: We have:

A =
1

h2

2 −1 0 . . . 0
−1 2 −1 . . . 0

...
...

...
...

...
0 . . . −1 2 −1
0 −1 2

 L =

f(x1)
f(x2)

...
f(xN−1)
f(xN)

 ≡ 0.

(4.4b) Implement a function

function A = PoissonMatrix(N)

which computes the matrix A for (4.4.4). Here the input parameter N denotes the number of
internal grid points.

Solution: See listing 4.7 for the code.

Listing 4.7: Implementation for PoissonMatrix
1 f u n c t i o n A = PoissonMatrix(N)
2

3 e = ones(N,1);
4 A = s p d i a g s((N+1)ˆ2 * [-e 2*e -e], -1:1, N, N);

(4.4c) Implement a function

function L = RHS(FHandle,N)

to compute the right-handside L (also for f ̸= 0) for (4.4.4). The input parameter FHandle is
the function handle for the right-handside f(x) and N is again the number of interior grid points.

Solution: See listing 4.8 for the code.

Problem Sheet 4 Page 12 Problem 4.4

Listing 4.8: Implementation for RHS
1 f u n c t i o n L = RHS(FHandle,N)
2

3 h = 1/(N+1);
4 L = FHandle((h:h:1-h)’);

(4.4d) Next, we discretize the time domain [0, T] by considering M ∈ N equispaced time
points

t0 = 0, t1, . . . , tM = T,

and denote the time step size by ∆t := |tn+1− tn| = T/M . Then, at a time point t = tn with n =
0, . . . ,M − 1, the solution vector with values u(x0, t

n), . . . , u(xN+1, t
n) is denoted by un. Show

that the implicit Euler scheme applied to (4.4.4) at a time point t = tn (for n = 0, . . . ,M − 1),
gives the following linear system for un+1:

(1+∆tA)un+1 = un, (4.4.5)

where 1 denotes the N ×N identity matrix.

HINT: For an ODE ∂
∂t
u = g(t,u), the implicit Euler scheme with timestep ∆t is

un+1 = un +∆t g(tn+1,u
n+1).

Solution: The implicit Euler scheme is given as follows:

∂

∂t
u(t) = −Au(t)

⇒ un+1 = un −∆tAun+1

⇒ (1+∆tA)un+1 = un.

(4.4e) Implement the function

function un = implicitEuler(u0,A,T,M)

which performs implicit Euler time stepping by recursive solves of the linear system (4.4.5).
The input parameter u0 is the N×1 vector containing the values {u0(xj)}Nj=1 of the initial data u0

at the interior grid points, A is as in subproblem (4.4b), M is the number of time steps, and T is the
final time, i.e. tM = T . The output un is the array {uh(xj, t

n)}Nj=1 containing the approximate
value of the solution u at the interior grid points {xj}Nj=1 and at the time point t = tM .

Solution: See listing 4.9 for the code.

Listing 4.9: Implementation for implicitEuler
1 f u n c t i o n un = implicitEuler(u0,A,T,M)
2

3 % compute time step size

4 dt = T / M;
5

Problem Sheet 4 Page 13 Problem 4.4

6 % initialize time t = 0

7 un = u0;
8

9 % compute eye(N) + dt * A for efficiency

10 eye_dtA = eye(s i z e(A)) + dt * A;
11

12 % run the for-loop for each time step

13 f o r n = 1:M
14 un = eye_dtA \ un;
15 end

(4.4f) Implement the function

function uhn = HeatSolve(N,M)

to solve the homogeneous heat equation (4.4.1) up to time T = 0.1.
The input parameters are as in subproblems (4.4b) and (4.4e). The output uhn is the array{
uh(xj, t

M)
}N+1

j=0
containing the approximate value of the solution u at the grid points {xj}N+1

j=0

and at the final time point t = T = tM .

HINT: Use the routines from subproblems (4.4b) and (4.4e).

Solution: See listing 4.10 for the code.

Listing 4.10: Implementation for HeatSolve
1 f u n c t i o n uhn = HeatSolve(N,M)
2

3 % time horizon

4 T = 0.1;
5

6 % spatial grid

7 xr = l i n s p a c e(0,1,N+2)’;
8

9 % initial data

10 u0 = s i n(pi*xr);
11

12 % solver

13 A = PoissonMatrix(N);
14 uhn = z e r o s(N+2,1);
15 uhn(2:end-1) = implicitEuler(u0(2:end-1),A,T,M);

(4.4g) Run the routine HeatSolve for N = 50 and M = 100 and plot the solution at initial
time t = 0 and final time t = T . Due to (zero) Dirichlet boundary conditions, you will observe
that the initial temperature distribution u0 is gradually diffusing towards zero.

Solution: See listing 4.11 for the code and Fig. for the plot.

Listing 4.11: Implementation for plotSolution

Problem Sheet 4 Page 14 Problem 4.4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

u(
x,

t)

Solution of the heat equation using implicit Euler FD

t=0
t=1

Figure 4.2: Plot for subproblem (4.4g)

1 f u n c t i o n plotSolution ()
2

3 N = 50;
4 M = 100;
5 xr = l i n s p a c e(0,1,N+2)’;
6

7 uh0 = HeatSolve(N,0);
8 uhn = HeatSolve(N,M);
9

10 hold on;
11 p l o t(xr, uh0,’b’);
12 p l o t(xr, uhn,’r’);
13 l egend(’t=0’,’t=1’);
14 x l a b e l(’x’);
15 y l a b e l(’u(x,t)’);
16 t i t l e (’Solution of the heat equation using implicit Euler FD’)
17 hold off;
18

19 p r i n t -depsc ’../fig/sol.eps’

(4.4h) If we kept the parameters the same, i.e. N = 50 and M = 100, and replaced the
implicit Euler time stepping by explicit Euler time stepping scheme, would our numerical method
still be appropriate for approximation of the solution u? If not, what could N or M be modified
to achieve this?

HINT: Consider stability and the CFL condition.

HINT: Alternatively, you could to implement the explicit Euler time stepping scheme and see
what happens. Do not waist too much time in debugging – it is not possible to obtain a stable

Problem Sheet 4 Page 15 Problem 4.4

approximation without modifying N or M .

Solution: The CFL condition
∆t

h2
≤ 1

2
(4.4.6)

is violated for N = 50 and M = 100. Hence, the explicit Euler scheme will be unstable and will
not approximate solution u. If we increase M to M = 1000, the CFL condition is satisfied and
the scheme becomes stable.

Published on April 14.
To be submitted on April 30.
Last modified on May 2, 2014

Problem Sheet 4 Page 16 Problem 4.4

