
S. Mishra

L. Scarabosio

J. Šukys

Spring Term 2014

Numerical Methods for Partial
Differential Equations

ETH Zürich

D-MATH

Homework Problem Sheet 5

Introduction. The first problem is the implementation of Crank-Nicolson time stepping scheme

coupled with linear finite element discretization of the heat equation. You will reuse most of the

FEM code that you have written for the Problem 1 of the Exercise sheet 3. The second problem

is the “introductory” problem for the hyperbolic partial differential equations, the method of

characteristics and the finite volume method using upwinding, which will be introduced in the

lectures on May 5th-6th.

Problem 5.1 Parabolic Timestepping with Crank-Nicolson (Core problem)

Let Ω := (0, 1)2 and consider the problem

∂u

∂t
−∆u = f in (0, T ]× Ω,

u = g on (0, T ]× ∂Ω,

u = u0 on {0} × Ω,

where f , g and u0 are given such u(t,x) = cos(2πx1) sin(tπx2) is the exact solution.

(5.1a) Derive the variational formulation for this parabolic problem.

HINT: Fix t ∈ (0, T ) and integrate by parts in x to obtain conditions on u(t) ∈ H1(Ω).

(5.1b) Show that the initial value problem arising from a spatial discretization of the variational

formulation using piecewise linear finite elements with basis functions {biN}i ∈ VN is given by

M
d

dt
~µ(t) +A~µ(t) = F (t),

M~µ(0) = ~µ0,
(5.1.1)

where ~µ(t) is the finite element coefficient vector of uN(t), (~µ0)i = (u0, b
i
N) is the finite element

coefficient vector of the projection of u0 onto VN , F is the time-dependent load vector

Fi(t) =

∫

Ω

f(t,x)biN(x) dx,

and M and A are the mass- and Galerkin matrices respectively

Mji =

∫

Ω

biN (x)b
j
N (x) dx, Aji =

∫

Ω

grad biN(x) · grad b
j
N(x) dx.

Problem Sheet 5 Page 1 Problem 5.1



(5.1c) For an initial value problem

∂

∂t
y = h(t,y) , y(0) = y0,

let the time-stepping scheme be given for m = 0, . . . , K by the Crank-Nicolson scheme

y(m+1) = y(m) +
1

2
∆t

(

h(tm,y
(m)) + h(tm+1,y

(m+1))
)

,

with initial value y(0) = y0, time step ∆t := T/K and time points tm := m∆t.

Show that the Crank-Nicolson scheme applied to (5.1.1) gives the following linear system:

(

M +
1

2
∆tA

)

~µ
(m+1)

=

(

M −
1

2
∆tA

)

~µ
(m)

+
1

2
∆t(Fm+1 + Fm), (5.1.2)

where Fm = F (tm).

(5.1d) Next, we aim to implement the linear FEM with Crank-Nicolson time stepping (5.1c).

For this purpose, we will reuse the routines from the Problem 1 of the Exercise sheet 3. The

Galerkin matrix assembly routines

Aloc = STIMA Heat LFE(Vertices, QuadRule, FHandle)

A = assemMat LFE(Coordinates,EHandle,varargin)

can be reused without any modifications.

Modify the load vector assembly routines

Lloc = LOAD LFE(Vertices, QuadRule, FHandle)

L = assemLoad LFE(Coordinates,QuadRule,FHandle)

to compute the time-dependent load vector F in (5.1.1).

HINT: For the detailed description of the above functions, refer to the Problem 1 of the Exercise

sheet 3.

(5.1e) Implement the local mass matrix routine

Aloc = MASS LFE(Vertices, QuadRule, FHandle),

which will be used in the assemMat LFE routine for the assembly of the global mass matrix M

in (5.1.1).

HINT: Modify the existing routine Aloc = STIMA Heat LFE.

(5.1f) Implement a function

U = Crank Nicolson LFE(Mesh, K, T, G HANDLE, F HANDLE, U0 HANDLE)

Problem Sheet 5 Page 2 Problem 5.1



to compute the FE solution (vector of coefficients U) using the K iterations of the Crank-Nicolson

time stepping scheme (5.1.2) up to a specified time T.

HINT: For each iteration of the Crank-Nicolson time stepping, you will need to solve (numeri-

cally) the resulting linear system for the coefficients of U.

HINT: For efficiency, construct the matrices M + 1
2
∆tA and M − 1

2
∆tA only once.

HINT: Use the supplied function P7O6 for any quadrature that you might need.

HINT: For the implementation of the Dirichlet boundary conditions, reuse the routine

[U,FreeDofs] = assemDir LFE(Mesh,BdFlag,GHandle)

from the Problem 1 of the Exercise sheet 3 - you will need to modify it to accept an additional

argument t indicating the time t.

(5.1g) Implement a function

U = plot Crank Nicolson LFE()

which computes the solution using Crank Nicolson LFE for T = 0.5, 1.0, 1.5, 2.0 and plots

it using the plot LFE routine from the Problem 1 of the Exercise sheet 3 (you may modify

the plot LFE routine to indicate the time T in the title). Use the mesh Square3.mat and

K = 100 time steps (for T = 2; use proportionally smaller K for other values of T ). For each

time T = 0.5, 1.0, 1.5, 2.0, you can recompute the solution from t = 0.

Does your implementation of the Crank-Nicolson time stepping scheme approximate the exact

solution correctly?

(5.1h) Implement a function

U = conv Crank Nicolson LFE()

which computes the solution for T = 1 using Crank Nicolson LFE on the series of meshes

Square1.mat - Square4.mat

and plots theL2(Ω)-error convergence. What type of convergence and what order do you observe?

Use the supplied function P7O6 for any quadrature that you might need. For each level of mesh

refinement, use the number of timesteps needed to balance the errors from time and space dis-

cretization.

HINT: Use the provided L2Err LFE routine to compute the L2(Ω)-error of the solution.

Problem 5.2 Transport in One Dimension

Consider the one-dimensional linear transport equation:

Ut + (a(x)U)x = 0, ∀(x, t) ∈ R× R+,

U(x, 0) = U0(x), ∀x ∈ R,
(5.2.1)

with coefficient a(x) ∈ C1(R).

Problem Sheet 5 Page 3 Problem 5.2



(5.2a) Write down the equation for characteristics of (5.2.1). Use it to derive an expression for

the exact solution.

HINT: Assume that a is an increasing function of x.

(5.2b) Let U(x, t) be a smooth solution of (5.2.1), that decays to zero at infinity. Then show

that U satisfies the energy bound

∫

R

U2(x, T )dx ≤ eCT

∫

R

U2
0 (x)dx, (5.2.2)

for all T > 0, with constant C depending on ‖a‖C1 .

(5.2c) Consider the equation (5.2.1) on the domain D = (0, 1) with periodic boundary condi-

tions and a = −1. Implement a stable numerical scheme to simulate (5.2.1). Plot the results at

T = 1 and 200 mesh cells for the following initial conditions:

Smooth Solution

U0(x) = sin(2πx) (5.2.3)

Non-smooth Solution

U0(x) =

{

1, if x < 0.5,

0, otherwise.
(5.2.4)

(5.2d) Plot L1(D) and L∞(D) errors vs numbers of cells (for no. of cells 100, 200, 400,

800, 1600, 3200, 6400). Use exact solution derived in sub-problem (5.2a) to calculate the errors.

Comment the observed results. In which case does the method converge? What is the convergence

rate?

Published on April 30th.

To be submitted on May 12th.

Last modified on May 2, 2014

Problem Sheet 5 Page 4 Problem 5.2


	Problem Sheet 5
	5.1 Parabolic Timestepping with Crank-Nicolson (Core)
	5.2 Transport in One Dimension


