
S. Mishra

L. Scarabosio

J. Šukys

Spring Term 2014

Numerical Methods for Partial
Differential Equations

ETH Zürich

D-MATH

Homework Problem Sheet 6

Introduction. This exercise sheet focuses on the stable FVM discretizations of the non-linear

conservation laws. The first problem is the implementation of various numerical flux functions for

the approximate Riemann solver and application of the methods for the one-dimensional Burgers’

equation. The second problem shows how to apply many of the FVM schemes that you have

already learned to a more practical setting. In particular, you will solve an example of a non-linear

multi-dimensional system of hyperbolic conservation laws - the so-called shallow water equations.

Such equations are used to model dynamics in fluids, where depth is very small, compared to the

width and length of a given physical domain. In particular, flows in oceans, rivers, lakes, as

well as atmospheric flows of air masses are often modeled using shallow water equations. In this

problem, we will use a very simplified model of a “dambreak”, in one and two space dimensions,

modeling the corresponding physical 2-D and 3-D flows, respectively. Upon multiple requests,

the master solution for the second problem will be provided in Python (however, MATLAB users

should be able to easily understand the code, as many things are similar).

Problem 6.1 Burgers’ equation: Rankine-Hugoniot condition and Riemann

solvers (Core problem)

Consider the one-dimensional Burger’s equation:

Ut +

(

U2

2

)

x

= 0, ∀(x, t) ∈ D × R+, (6.1.1)

with domain D = (−1, 3) and following initial conditions:

(Shock) U(x, 0) =

{

1, if x < 0,

0, otherwise,
(6.1.2)

(Rarefaction) U(x, 0) =

{

−1, if x < 0,

1, otherwise,
(6.1.3)

(Rarefaction and Shock) U(x, 0) =

{

1, if 0 < x < 1,

0, otherwise.
(6.1.4)

(6.1a) Using Rankine-Hugoniot conditions (for shock waves) and entropy conditions (to dis-

tinguish between shocks and rarefaction waves), derive the expression for weak entropy solutions

of (6.1.1) and all three initial conditions (6.1.2) - (6.1.4).

Problem Sheet 6 Page 1 Problem 6.1

(6.1b) Implement a finite volume code for the Burgers’ equation (6.1.1), using Godunov’s,

Roe, Lax-Friedrichs and Rusanov’s numerical flux functions. Compute the numerical solution

for the initial conditions (6.1.2), (6.1.3), and (6.1.4), using outflow boundary conditions. Plot the

solutions at time T = 1.0 for 100 mesh cells. Explain the observed results.

HINT: Outflow boundary conditions can be easily implemented by extrapolating the values of the

variable to the ghost cell i.e. Un
0 = Un

1 and Un
N+1 = Un

N .

(6.1c) Use the exact solutions derived in sub-problem (6.1a) to calculate L1(D) and L∞(D)
errors. Plot L1(D) and L∞(D) errors vs numbers of cells (for no. of cells 100, 200, 400, 800,

1600), for each case of the initial conditions in (6.1.2) - (6.1.4).

HINT: The runs of the FVM solver for meshes with 800 and 1600 cells can take several minutes.

Problem 6.2 Shallow water equations in two dimensions

Consider the 2-dimensional shallow water equations



























ht + (hu)x + (hv)y = 0,

(hu)t +

(

hu2 +
1

2
gh2

)

x

+ (huv)y = −ghbx,

(hv)t + (huv)x +

(

hv2 +
1

2
gh2

)

y

= −ghby.

(6.2.1)

Here, for a point (x, y) ∈ R
2 and time instance t, variable h(x, y, t) denotes the height of the

fluid column above the bottom topography b = b(x, y) over which the fluid flows and (u, v) =
(u(x, y, t), v(x, y, t)) is the vertically averaged (or depth averaged) horizontal fluid velocity field.

The constant g denotes the size of the negative vertical acceleration due to gravity and is set to

g = 9.812 here. For now, we also consider flat bottom topography, i.e. we set b ≡ const = 0, and

hence the right hand side of (6.2.1) becomes zero.

Denoting the vectors of conserved variables (h, hu and hv) as U = U(x, t) : R2 × R+ → R
3,

and the directional (in x and y directions) fluxes as F,G : R3 → R
3, i.e.

U =





h
hu
hv



, F =





hu
hu2 + 1

2
gh2

huv



, G =





hv
huv

hv2 + 1

2
gh2



, (6.2.2)

the system (6.2.1) with given initial data U0 is rewritten as a system of conservation laws,

{

U(x, t)t + F(U)x +G(U)y = 0,

U(x, 0) = U0(x).
x = (x, y) ∈ D, t > 0, (6.2.3)

where we restrict the computational domain to some bounded Cartesian domain D ⊂ R
2.

The maximum directional wave speeds (in directions x and y), corresponding to the maximal

eigenvalues of the matrices ∂F/∂U and ∂G/∂U, are given by the

λx(U) = |u|+
√

gh, λy(U) = |v|+
√

gh. (6.2.4)

Problem Sheet 6 Page 2 Problem 6.2

(6.2a) As a starting point, we first consider the one-dimensional version of the shallow water

equations, obtained by setting v ≡ 0 in (6.2.1), removing flux G, and denoting U = (h, hu)⊤,







ht + (hu)x = 0,

(hu)t +

(

hu2 +
1

2
gh2

)

x

= 0.
(6.2.5)

For the finite domain D = I1 = (0, 2), implement the Finite Volume solver using the Rusanov

numerical flux and the Forward Euler time stepping, i.e.

U
n+1
i := U

n
i −

∆t

∆x
(Fn

i+ 1

2

− F
n

i− 1

2

), (6.2.6)

where U
n
i are the vectors (hn

i , (hu)
n
i)

⊤ denoting the cell averages of the solution U = (h, hu)⊤,

and F
n

i+ 1

2

are approximated by the Rusanov flux function

F
n

i+ 1

2

(Un
i ,U

n
i+1) ≈ F

Rus(UL,UR) =
(FL + FR)

2
−

λmax

2
(UR −UL), (6.2.7)

with local maximum wave speeds

λmax := max(λx(UL), λx(UR)).

The mesh width is ∆x = |I1|/Nx, where Nx denotes the number of the mesh cells, and the time

step size respects the CFL condition (with CFL number CCFL set to 0.9)

∆t = CCFL

∆x

λ̄x

≤
∆x

λ̄x

=
∆x

maxi λx(Ui)
. (6.2.8)

Use the “outflow” boundary conditions, which can be easily implemented by extrapolating the

values of the variable to the ghost cell i.e. Un
0 = U

n
1 and U

n
N+1 = U

n
N .

Run your code for the “dambreak” initial data given by

U0(x) =
(

h0(x), u0(x)
)⊤

=

{

(2− b(x), 0)⊤, if x < 1,

(1.5− b(x), 0)⊤, otherwise,
(6.2.9)

for Nx = 512 mesh cells up to final time T = 0.1 and plot the results (both water column height

h and velocity u).

HINT: Consider the evaluations of U at the cell mid-points xi for the cell averages Ui.

HINT: Implement the Rusanov flux (6.2.7) as a separate function; this way you will be able to

quickly extend and adapt it for the 2-dimensional FVM solver in the next sub-problem.

HINT: The solution consists of the left-moving rarefaction wave and the right-moving shock

wave, as depicted in Figure 6.1.

HINT: It is advisable to implement and use the conversion functions between the observable (also

called primitive) variables (h, u) and the conserved variables (h, hu).

HINT: You might find the MATLAB function diff or the Python function numpy.diff useful.

HINT: For debugging, it is always a good idea to plot the initial data and the solution after one

time step, and verify that your numerical flux is correct and provides stable approximations.

Problem Sheet 6 Page 3 Problem 6.2

0.0 0.5 1.0 1.5 2.01.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4
Water column height h

t = 0.00
t = 0.10

0.0 0.5 1.0 1.5 2.00.0

0.1

0.2

0.3

0.4

0.5

0.6 Water velocity u
t = 0.00
t = 0.10

Figure 6.1: FVM approximations of the 1-D shallow water equations (6.2.5) and the dambreak

problem (6.2.9) with flat bottom topography b ≡ 0.

(6.2b) Extend your code of subproblem (6.2a) to non-constant bottom topography, given by

b(x) = 0.1 sin(5πx)− 0.2x+ 1.4. (6.2.10)

The resulting FVM scheme then also needs to incorporate the source term Si,

U
n+1
i := U

n
i −

∆t

∆x
(Fn

i+ 1

2

− F
n

i− 1

2

) + ∆tSi, (6.2.11)

which you can approximate by using second order accurate central differences,

Si =

[

0

ghi
Bi+1−Bi−1

2∆x

]

. (6.2.12)

I order to deal with the boundary conditions for b, simply set

S0 = (0, 0)⊤, SNx
= (0, 0)⊤. (6.2.13)

Run your code for the “dambreak” initial data (6.2.9) for Nx = 512 mesh cells up to final time

T = 0.1 and plot the results (plot water surface h+ b and bottom topography b in the same plot).

HINT: Do not forget to subtract bottom topography b(x) from h(x) in (6.2.9).

HINT: For plotting, do not forget to add bottom topography b to water column h to get the actual

water surface.

HINT: The solution, analogously as in subproblem (6.2a), consists of the left-moving rarefaction

wave and the right-moving shock wave, as depicted in Figure 6.2.

(6.2c) In this sub-problem, we extend the 1-dimensional Finite Volume scheme from the

subproblem (6.2a) with flat bottom topography b ≡ 0 to the 2-dimensional shallow water equa-

tions (6.2.3). Consider the finite domain D = I1 × I2 = (0, 2) × (0, 1) and the corresponding

uniform axiparallel equidistant mesh with Nx cells in x direction and Ny cells in y direction. Im-

plement the Finite Volume solver using the dimension splitting, Rusanov numerical flux and the

Forward Euler time stepping, i.e.

U
n+1
i,j := U

n
i,j −

∆t

∆x
(Fn

i+ 1

2
,j
− F

n

i− 1

2
,j
)−

∆t

∆y
(Gn

i,j+ 1

2

−G
n

i,j− 1

2

), (6.2.14)

Problem Sheet 6 Page 4 Problem 6.2

0.0 0.5 1.0 1.5 2.01.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4
Water column height h

t = 0.00
t = 0.10
topography

0.0 0.5 1.0 1.5 2.0−0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4 Water velocity u
t = 0.00
t = 0.10

Figure 6.2: FVM approximations of the 1-D shallow water equations (6.2.5) and the dambreak

problem (6.2.9) with varying bottom topography (6.2.10).

where U
n
i,j are the vectors (hn

i,j, (hu)
n
i,j, (hv)

n
i,j)

⊤ denoting the cell averages of the solution U =
(h, hu, hv)⊤, and the directional fluxes Fn

i+ 1

2
,j

and G
n

i,j+ 1

2

are approximated by the Rusanov flux

function from (6.2.7) in the corresponding direction, i.e.

F
n

i+ 1

2
,j
≈ F

Rus(Fn
i,j ,F

n
i+1,j), G

n

i,j+ 1

2

≈ F
Rus(Fn

i,j,F
n
i,j+1). (6.2.15)

The time step size respects the 2-dimensional version of the CFL condition (6.2.8)

∆t = CCFL

(

λ̄x

∆x
+

λ̄y

∆y

)−1

, λ̄x = max
i,j

λx(Ui,j), λ̄y = max
i,j

λy(Ui,j). (6.2.16)

Run your code for the 2-dimensional “dambreak” initial data given by

U0(x, y) =
(

h0(x, y), u0(x, y), v0(x, y)
)⊤

=

{

(2− b(x, y), 0, 0)⊤, if x < (y − 0.5)2 + 0.75,

(1.5− b(x, y), 0, 0)⊤, otherwise,

(6.2.17)

for Nx = 64 and Ny = 32 mesh cells up to final time T = 0.1 and plot the results (both water

column height h and velocities u and v). You might also want (this is optional) to generate a 3D

plot with the water surface h being plotted on the z-axis. Use the “outflow” boundary conditions,

which can be easily implemented by extrapolating the values of the variable to the ghost cell, i.e.

U
n
0,j = U

n
1,j , U

n
N+1,j = U

n
N,j (6.2.18)

in the x direction (i.e. for the evaluations of the flux F), and

U
n
i,0 = U

n
i,1, U

n
i,N+1 = U

n
i,N . (6.2.19)

in the y direction (i.e. for the evaluations of the flux G).

HINT: You might find the MATLAB function meshgrid or the Python function meshgrid

(with option indexing=’ij’) from numpy useful.

HINT: If you are eager to test the limits of your machine and prepared to wait longer (an hour

or so), run your 2-D code with Nx = 512 and Ny = 256. For even larger resolutions (and hence

smaller errors), parallel implementations are usually needed.

Problem Sheet 6 Page 5 Problem 6.2

0 100 200 300 400 500

0

50

100

150

200

250

Water column height h at t = 0.00

1.50
1.55
1.60
1.65
1.70
1.75
1.80
1.85
1.90
1.95
2.00

0 100 200 300 400 500

0

50

100

150

200

250

Water column height h at t = 0.10

1.50
1.55
1.60
1.65
1.70
1.75
1.80
1.85
1.90
1.95
2.00

0 100 200 300 400 500

0

50

100

150

200

250

Water velocity u at t = 0.10

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

0 100 200 300 400 500

0

50

100

150

200

250

Water velocity v at t = 0.10

−0.24
−0.18
−0.12
−0.06
0.00
0.06
0.12
0.18
0.24

Figure 6.3: FVM approximations of the 2-D shallow water equations (6.2.1) and the dambreak

problem (6.2.17).

HINT: For code testing purposes, the reference plots (using Nx = 512 and Ny = 256) are given

in Figure 6.3.

Published on May 14th.

To be submitted on May 30th.

Last modified on May 16, 2014

Problem Sheet 6 Page 6 Problem 6.2

	Problem Sheet 6
	6.1 Burgers' equation: Rankine-Hugoniot condition and Riemann solvers (Core)
	6.2 Shallow water equations in two dimensions

