Dr. R. Käppeli M. Sprecher

Serie 7

1. a) Berechnen Sie per Hand das Arnoldi-Verfahren (Seite 13 in den Vorlesungsunterlagen) für die Matrix

$$A = \begin{pmatrix} 1 & -1 & 1 & 0 \\ 0 & -1 & 2 & 0 \\ 0 & -3 & 4 & 0 \\ 0 & -3 & 2 & 2 \end{pmatrix} \in \mathbb{R}^{4 \times 4}$$

und den Startvektor $x = (0, 0, 1, 0) \in \mathbb{R}^4$ bis das Verfahren abbricht.

- **b**) Berechnen Sie Eigenvektoren und Eigenwerte von H_k und daraus 2 Eigenvektoren und Eigenwerte von A.
- c) Geben Sie eine Basis des 4-ten Krylov-Raums zu A und x an.
- **2.** Geben Sie $(a_0,a_1,a_2,a_3) \in \mathbb{R}^4$ an, sodass $\mathbb{R} \ni x \mapsto a_0 + a_1x + a_2x^2 + a_3x^3 \in \mathbb{R}$ die Lösung des polynomiellen Interpolationsproblems zu $(x_0,x_1,x_2,x_3)=(-1,0,1,2)$ und $(y_0,y_1,y_2,y_3)=(-4,-1,0,5)$ ist. Lösen Sie diese Aufgabe auf drei Arten.
 - a) Indem Sie die Lagrange-Polynome verwenden.
 - b) Indem Sie das Gleichungssystem für die Koeffizienten in der Newton Basis aufstellen und lösen.
 - c) Indem Sie dividierte Differenzen verwenden.
- **3. a)** Schreiben Sie eine Matlab-Funktion $my_interpol(x,y)$ welches die Koeffizienten $(c_0,c_1,\ldots,c_n)\in\mathbb{R}^{n+1}$ der Newton-Interpolation für die Stützstellen $(x_0,x_1\ldots,x_n)\in\mathbb{R}^{n+1}$ und Werte $(y_0,\ldots,y_n)\in\mathbb{R}^{n+1}$ zurückgibt. (siehe Seite 5 in den Vorlesungsunterlagen)
 - b) Schreiben Sie eine Matlab-Funktion $my_poly_eval(c,x,t)$ welches zu vorgegebenen Koeffizenten $(c_0,c_1,\ldots,c_n)\in\mathbb{R}^{n+1}$ der Newton-Interpolation mit Stützstellen $(x_0,x_1\ldots,x_n)\in\mathbb{R}^{n+1}$ und $t\in\mathbb{R}$ das Interpolationspolynom $\sum_{i=0}^n c_i N_i$ an der Stelle t auswertet. (siehe Seite 5 in den Vorlesungsunterlagen). Schreiben Sie dann ihre Funktion so um, dass Sie das Polynom an verschiedenen Stellen t gleichzeitig auswerten kann.

- c) Wir betrachten nun die Stützstellen $(x_0,\ldots,x_n)\in\mathbb{R}^{n+1}$ mit $x_i=-1+\frac{2i+1}{n+1}$ und die dazugehörigen Lagrange-Polynome L_i für $i\in\{0,\ldots,n\}$. Plotten Sie die Lagrangepolynome für n=0,1,2,3,4,5 im Interval [-1,1]. Verwenden Sie dazu ein sehr feines Gitter (z.b. ≈ 1000 Punkte) auf welchem Sie die Interpolationspolynome auswerten.
- d) Erstellen Sie einen halblogarithmischen Plot (Mit dem Matlabbefehl semilogy) der Lebesgue-Konstante $\Lambda_{x_0,\dots,x_n}([-1,1])$ in Abhängigkeit von $n=1,2,\dots,20$.