Sheet 10

Unless stated otherwise we work over an algebraically closed field k.

1. (Hartshorne Exercise I.6.1) Recall that a curve is rational if it is birationally equivalent to \mathbb{P}^{1}. Let Y be a nonsingular rational curve which is not isomorphic to \mathbb{P}^{1}. Show
a) Y is isomorphic to an open subset of \mathbb{A}^{1}.
b) Y is affine.
c) $A(Y)$ is a unique factorization domain.
2. (Hartshorne Exercise I.6.2, an elliptic curve) Let Y be the curve $y^{2}=x^{3}-x$ in \mathbb{A}^{2} and assume that char $k \neq 2$. In this exercise we will show that Y is not a rational curve, and hence $K:=k(Y)$ is not a pure transcendental extension of k.
a) Show that Y is nonsingular, and deduce that $A:=A(Y) \cong k[x, y] /\left(y^{2}-x^{3}+x\right)$ is an integrally closed domain.
b) Let $k[x]$ be the subring of K generated by the image of $x \in A$. Show that $k[x]$ is a polynomial ring, and that A is the integral closure of $k[x]$ in K.
c) Show that there is an automorphism $\sigma: A \rightarrow A$ which sends y to $-y$ and leaves x fixed. For any $a \in A$, define the norm of a to be $N(a)=a \sigma(a)$. Show that $N(a) \in k[x], N(1)=1$ and $N(a b)=N(a) N(b)$ for any $a, b \in A$.
d) Using the norm, show that the units in A are precisely the nonzero elements of k. Show that x and y are irreducible elements of A. Show that A is not a unique factorization domain.
e) Using exercise 1, prove that Y is not a rational curve.
3. (Hartshorne Exercise I.6.6, Automorphisms of \mathbb{P}^{1}) Think of \mathbb{P}^{1} as $\mathbb{A}^{1} \cup\{\infty\}$. Then we define a fractional linear transformation of \mathbb{P}^{1} by sending $x \mapsto \frac{a x+b}{c x+d}$, for $a, b, c, d \in k$, $a d-b c \neq 0$.
a) Show that a fractional linear transformation induces an automorphism of \mathbb{P}^{1} (i.e., an isomorphism of \mathbb{P}^{1} with itself). We denote the group of all these fractional linear transformations by PGL(2).
b) Let Aut \mathbb{P}^{1} denote the group of all automorphisms of \mathbb{P}^{1}. Show that Aut $\mathbb{P}^{1} \cong$ Aut $k(x)$, the group of k-automorphisms of the field $k(x)$.
c) Now show that every automorphism of $k(x)$ is a fractional linear transformation, and deduce that PGL(2) \rightarrow Aut \mathbb{P}^{1} is an isomorphism.
d) Given three distinct points z_{1}, z_{2}, z_{3} and w_{1}, w_{2}, w_{3} on \mathbb{P}^{1}, there is a unique $\varphi \in$ $\operatorname{PGL}(2)$ such that $\varphi\left(z_{1}\right)=w_{1}, \varphi\left(z_{2}\right)=w_{2}, \varphi\left(z_{3}\right)=\varphi\left(w_{3}\right)$.
4. (Harshorne Exercise I.6.7) Let $P_{1}, \ldots, P_{r}, Q_{1}, \ldots, Q_{s}$ be distinct points in \mathbb{A}^{1}. If $\mathbb{A}^{1} \backslash\left\{P_{1}, \ldots, P_{r}\right\}$ is isomorphic to $\mathbb{A}^{1} \backslash\left\{Q_{1}, \ldots, Q_{s}\right\}$, show that $r=s$. Is the converse true?

Hint: Exercise 3
5. (Elliptic and hyperelliptic curves) Let char $k=0$. Let $p \in k[x]$ be a nonconstant polynomial of degreee d with simple zeros. Then $C=V\left(y^{2}-p(x)\right) \subseteq \mathbb{A}^{2}$ is a smooth curve, cf. sheet 8 , exercise $\mathbf{4 a}$. Let \bar{C} be its projective closure in \mathbb{P}^{2}. Let \widetilde{C} be the nonsingular compactification of C. For $d \in\{3,4\}$ we call \widetilde{C} an elliptic curve, for $d \geq 5$ a hyperelliptic curve. The morphism $f: C \rightarrow \mathbb{A}^{1},(x, y) \mapsto x$, extends to $\widetilde{f}: \widetilde{C} \rightarrow \mathbb{P}^{1}$. Show
a) f has ramification index $e_{(x, y)}(f)=1$ if $p(x) \neq 0$ and $e_{(x, y)}(f)=2$ if $p(x)=0$.
b) If $d \leq 2$, then $\bar{C} \cong \widetilde{C} \cong \mathbb{P}^{1}$.
c) If $d \geq 3$, then $C_{\infty}=\bar{C} \backslash C$ is a single point. It is a singular point of \bar{C} if and only if $d \geq 4$.

Hint: Jacobian criterion
d) If $d \geq 3, \widetilde{C}$ can be described as C glued with

$$
U=\left\{(u, v) \in \mathbb{A}^{2} \left\lvert\, v^{2}=u^{2\left\lfloor\left\lfloor\frac{d+1}{2}\right\rfloor\right.} p\left(\frac{1}{u}\right)\right.\right\}
$$

by the isomorphism

$$
C \cap D(x) \rightarrow U \cap D(u),(x, y) \mapsto\left(x^{-1}, y x^{-\left\lfloor\frac{d+1}{2}\right\rfloor}\right)
$$

Conclude that $\widetilde{C} \backslash C=\widetilde{f}^{-1}(\infty)$ consists of one or two points depending on whether d is odd or even.
e) Let \widetilde{C} be an elliptic curve. Then \widetilde{C} is isomorphic to a \widetilde{C} given by $p(x)=x(x-$ 1) ($x-\lambda$) for some $\lambda \in k \backslash\{0,1\}$.

Hint: Exercise 3d

6. Let $\varphi: C_{1} \rightarrow C_{2}$ be a morphism of nonsingular projective curves that is not constant. Let $\varphi^{\sharp}: k\left(C_{2}\right) \rightarrow k\left(C_{1}\right)$ be the corresponding embedding of function fields. We have a pullback map $\varphi^{*}: \operatorname{Div}\left(C_{2}\right) \rightarrow \operatorname{Div}\left(C_{1}\right)$. Let $\varphi_{*}: \operatorname{Div}\left(C_{1}\right) \rightarrow \operatorname{Div}\left(C_{2}\right)$ be the pushforward map. Show
a) $\varphi_{*} \varphi^{*}$ is multiplication by $\operatorname{deg} \varphi$ on $\operatorname{Div}\left(C_{2}\right)$.
b) $\varphi^{*} \varphi_{*}$ is not multiplication by $\operatorname{deg} \varphi$ on $\operatorname{Div}\left(C_{1}\right)$ in general, but we have $\operatorname{deg}\left(\varphi^{*} \varphi_{*} D\right)=$ $\operatorname{deg} \varphi \operatorname{deg} D$ for all $D \in \operatorname{Div}\left(C_{1}\right)$.
c) $\nu_{p}\left(\varphi^{\sharp} f\right)=e_{p}(\varphi) \nu_{\varphi(p)}(f)$ for all $p \in C_{1}$ and $f \in k\left(C_{2}\right)^{\times}$. Then show $\varphi^{*}(\operatorname{div} f)=$ $\operatorname{div}\left(\varphi^{\sharp} f\right)$ for $f \in k\left(C_{2}\right)^{\times}$.
d) The sequence

$$
1 \rightarrow k^{\times} \rightarrow k\left(\mathbb{P}^{1}\right)^{\times} \xrightarrow{\text { div }} \operatorname{Div}\left(\mathbb{P}^{1}\right) \xrightarrow{\operatorname{deg}} \mathbb{Z} \rightarrow 0
$$

is exact.

Due on Friday, May 22.

