Algebraic Geometry

Sheet 10

Unless stated otherwise we work over an algebraically closed field k.

- 1. (Hartshorne Exercise I.6.1) Recall that a curve is *rational* if it is birationally equivalent to \mathbb{P}^1 . Let Y be a nonsingular rational curve which is not isomorphic to \mathbb{P}^1 . Show
 - a) Y is isomorphic to an open subset of \mathbb{A}^1 .
 - **b**) Y is affine.
 - c) A(Y) is a unique factorization domain.
- **2.** (Hartshorne Exercise I.6.2, an elliptic curve) Let Y be the curve $y^2 = x^3 x$ in \mathbb{A}^2 and assume that char $k \neq 2$. In this exercise we will show that Y is not a rational curve, and hence K := k(Y) is not a pure transcendental extension of k.
 - a) Show that Y is nonsingular, and deduce that $A := A(Y) \cong k[x, y]/(y^2 x^3 + x)$ is an integrally closed domain.
 - b) Let k[x] be the subring of K generated by the image of $x \in A$. Show that k[x] is a polynomial ring, and that A is the integral closure of k[x] in K.
 - c) Show that there is an automorphism $\sigma : A \to A$ which sends y to -y and leaves x fixed. For any $a \in A$, define the norm of a to be $N(a) = a\sigma(a)$. Show that $N(a) \in k[x], N(1) = 1$ and N(ab) = N(a)N(b) for any $a, b \in A$.
 - d) Using the norm, show that the units in A are precisely the nonzero elements of k. Show that x and y are irreducible elements of A. Show that A is not a unique factorization domain.
 - e) Using exercise 1, prove that Y is not a rational curve.
- **3.** (Hartshorne Exercise I.6.6, Automorphisms of \mathbb{P}^1) Think of \mathbb{P}^1 as $\mathbb{A}^1 \cup \{\infty\}$. Then we define a fractional linear transformation of \mathbb{P}^1 by sending $x \mapsto \frac{ax+b}{cx+d}$, for $a, b, c, d \in k$, $ad bc \neq 0$.

- a) Show that a fractional linear transformation induces an *automorphism* of \mathbb{P}^1 (i.e., an isomorphism of \mathbb{P}^1 with itself). We denote the group of all these fractional linear transformations by PGL(2).
- **b)** Let $\operatorname{Aut} \mathbb{P}^1$ denote the group of all automorphisms of \mathbb{P}^1 . Show that $\operatorname{Aut} \mathbb{P}^1 \cong \operatorname{Aut} k(x)$, the group of k-automorphisms of the field k(x).
- c) Now show that every automorphism of k(x) is a fractional linear transformation, and deduce that $PGL(2) \to Aut \mathbb{P}^1$ is an isomorphism.
- **d)** Given three distinct points z_1, z_2, z_3 and w_1, w_2, w_3 on \mathbb{P}^1 , there is a unique $\varphi \in \mathrm{PGL}(2)$ such that $\varphi(z_1) = w_1, \varphi(z_2) = w_2, \varphi(z_3) = \varphi(w_3)$.
- 4. (Harshorne Exercise I.6.7) Let $P_1, \ldots, P_r, Q_1, \ldots, Q_s$ be distinct points in \mathbb{A}^1 . If $\mathbb{A}^1 \setminus \{P_1, \ldots, P_r\}$ is isomorphic to $\mathbb{A}^1 \setminus \{Q_1, \ldots, Q_s\}$, show that r = s. Is the converse true?

Hint: Exercise **3**

- 5. (Elliptic and hyperelliptic curves) Let char k = 0. Let $p \in k[x]$ be a nonconstant polynomial of degree d with simple zeros. Then $C = V(y^2 p(x)) \subseteq \mathbb{A}^2$ is a smooth curve, cf. sheet 8, exercise 4a. Let \overline{C} be its projective closure in \mathbb{P}^2 . Let \widetilde{C} be the nonsingular compactification of C. For $d \in \{3, 4\}$ we call \widetilde{C} an elliptic curve, for $d \geq 5$ a hyperelliptic curve. The morphism $f: C \to \mathbb{A}^1$, $(x, y) \mapsto x$, extends to $\widetilde{f}: \widetilde{C} \to \mathbb{P}^1$. Show
 - **a)** f has ramification index $e_{(x,y)}(f) = 1$ if $p(x) \neq 0$ and $e_{(x,y)}(f) = 2$ if p(x) = 0.
 - **b)** If $d \leq 2$, then $\overline{C} \cong \widetilde{C} \cong \mathbb{P}^1$.
 - c) If $d \ge 3$, then $C_{\infty} = \overline{C} \setminus C$ is a single point. It is a singular point of \overline{C} if and only if $d \ge 4$.

 ${\it Hint:}$ Jacobian criterion

d) If $d \ge 3$, \widetilde{C} can be described as C glued with

$$U = \left\{ (u, v) \in \mathbb{A}^2 \ \left| \ v^2 = u^{2\left\lfloor \frac{d+1}{2} \right\rfloor} p\left(\frac{1}{u}\right) \right. \right\}$$

by the isomorphism

$$C \cap D(x) \to U \cap D(u) , (x,y) \mapsto \left(x^{-1}, yx^{-\left\lfloor \frac{d+1}{2} \right\rfloor}\right) .$$

Conclude that $\widetilde{C} \setminus C = \widetilde{f}^{-1}(\infty)$ consists of one or two points depending on whether d is odd or even.

e) Let \widetilde{C} be an elliptic curve. Then \widetilde{C} is isomorphic to a \widetilde{C} given by $p(x) = x(x - 1)(x - \lambda)$ for some $\lambda \in k \setminus \{0, 1\}$.

Hint: Exercise 3d

- 6. Let $\varphi : C_1 \to C_2$ be a morphism of nonsingular projective curves that is not constant. Let $\varphi^{\sharp} : k(C_2) \to k(C_1)$ be the corresponding embedding of function fields. We have a pullback map $\varphi^* : \text{Div}(C_2) \to \text{Div}(C_1)$. Let $\varphi_* : \text{Div}(C_1) \to \text{Div}(C_2)$ be the pushforward map. Show
 - **a)** $\varphi_*\varphi^*$ is multiplication by deg φ on Div (C_2) .
 - **b)** $\varphi^* \varphi_*$ is not multiplication by deg φ on Div (C_1) in general, but we have deg $(\varphi^* \varphi_* D) =$ deg φ deg D for all $D \in$ Div (C_1) .
 - c) $\nu_p(\varphi^{\sharp}f) = e_p(\varphi)\nu_{\varphi(p)}(f)$ for all $p \in C_1$ and $f \in k(C_2)^{\times}$. Then show $\varphi^*(\operatorname{div} f) = \operatorname{div}(\varphi^{\sharp} f)$ for $f \in k(C_2)^{\times}$.
 - d) The sequence

$$1 \to k^{\times} \to k(\mathbb{P}^1)^{\times} \xrightarrow{\operatorname{div}} \operatorname{Div}(\mathbb{P}^1) \xrightarrow{\operatorname{deg}} \mathbb{Z} \to 0$$

is exact.

Due on Friday, May 22.