Prof. Dr. P. Nelson D-MATH Algebraic Geometry

Sheet 1

Unless stated otherwise k denotes an algebraically closed field.

- 1. Consider the subsets Y of \mathbb{A}^2 given below. Determine
 - the ideal I(Y) in k[x, y] of polynomials vanishing on Y.
 - the closure of Y in \mathbb{A}^2 w.r.t. the Zariski topology.
 - whether Y is an affine variety in \mathbb{A}^2 .
 - **a)** $(\{0\} \times \mathbb{A}^1) \cup (\mathbb{A}^1 \times \{0\})$
 - **b)** the graph of $t \mapsto e^t$, $\mathbf{k} = \mathbb{C}$
 - c) $\{1\} \times \mathbb{Z}$
 - d) $\mathbb{Z} \times \mathbb{Z}$
 - e) $\{(t^m, t^n) \mid t \in k\}$ for given $m, n \in \mathbb{Z}_{\geq 1}$
 - f) $V(\{x^2 + y 1, y^2\})$
- 2. * Show
 - a) $SL_2(\mathbb{C})$ is an affine variety in $Mat_2(\mathbb{C}) = \mathbb{A}^4$.
 - **b)** $SL_2(\mathbb{Z})$ is dense in $SL_2(\mathbb{C})$ w.r.t. the Zariski topology.

Hint: You may use without proof that any element of $SL_2(\mathbb{C})$ can written as a multiple product of matrices of the form $\begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix}$ and $\begin{pmatrix} 1 & 0 \\ c & 1 \end{pmatrix}$ with $b, c \in \mathbb{C}$. Use a generalization of the result of exercise **1d**.

- **3.** (*Conics in* \mathbb{A}^2 , Hartshorne Exercise I.1.1)
 - a) Show that for $Y = V(y-x^2)$ in \mathbb{A}^2 the ring of regular functions A(Y) is isomorphic to k[t].
 - **b)** Show that for Y = V(xy 1) in $\mathbb{A}^2 A(Y)$ is isomorphic to $k[t, t^{-1}]$.

- c) Let $f \in k[x, y]$ be an irreducible quadratic polynomial. Show that for Y = V(f)A(Y) is isomorphic to A(Y) from **a** or **b** and give the corresponding explicit condition on f.
- d) What are the additional possibilities in \mathbf{c} if we drop the condition that f be irreducible?
- **4.** Let $f_1, f_2 \in k[x_1, \ldots, x_n]$ be such that each irreducible factor of f_1 and f_2 occurs only once. Show that $V(f_1) = V(f_2)$ implies $f_1 = cf_2$ for some $c \in k^{\times} = k \setminus \{0\}$.
- 5. * (Gathmann lecture notes Exercise 1.9) Prove that every affine variety in \mathbb{A}^n consisting of only finitely many points can be written as the zero locus of n polynomials.
- 6. (Hartshorne Exercise I.3.2a) Show that $\mathbb{A}^1 \to \mathbb{A}^2$, $t \mapsto (t^2, t^3)$, is a homeomorphism onto $Y = V(y^2 x^3)$, but $k[t] = A(\mathbb{A}^1)$ is not isomorphic to A(Y).

Due on Friday, February 27.