Sheet 1

Unless stated otherwise k denotes an algebraically closed field.

1. Consider the subsets Y of \mathbb{A}^{2} given below. Determine

- the ideal $I(Y)$ in $\mathrm{k}[x, y]$ of polynomials vanishing on Y.
- the closure of Y in \mathbb{A}^{2} w.r.t. the Zariski topology.
- whether Y is an affine variety in \mathbb{A}^{2}.
a) $\left(\{0\} \times \mathbb{A}^{1}\right) \cup\left(\mathbb{A}^{1} \times\{0\}\right)$
b) the graph of $t \mapsto e^{t}, \mathrm{k}=\mathbb{C}$
c) $\{1\} \times \mathbb{Z}$
d) $\mathbb{Z} \times \mathbb{Z}$
e) $\left\{\left(t^{m}, t^{n}\right) \mid t \in \mathrm{k}\right\}$ for given $m, n \in \mathbb{Z}_{\geq 1}$
f) $V\left(\left\{x^{2}+y-1, y^{2}\right\}\right)$

2. * Show
a) $\mathrm{SL}_{2}(\mathbb{C})$ is an affine variety in $\operatorname{Mat}_{2}(\mathbb{C})=\mathbb{A}^{4}$.
b) $\mathrm{SL}_{2}(\mathbb{Z})$ is dense in $\mathrm{SL}_{2}(\mathbb{C})$ w.r.t. the Zariski topology.

Hint: You may use without proof that any element of $\mathrm{SL}_{2}(\mathbb{C})$ can written as a multiple product of matrices of the form $\left(\begin{array}{ll}1 & b \\ 0 & 1\end{array}\right)$ and $\left(\begin{array}{ll}1 & 0 \\ c & 1\end{array}\right)$ with $b, c \in \mathbb{C}$. Use a generalization of the result of exercise 1d.
3. (Conics in \mathbb{A}^{2}, Hartshorne Exercise I.1.1)
a) Show that for $Y=V\left(y-x^{2}\right)$ in \mathbb{A}^{2} the ring of regular functions $A(Y)$ is isomorphic to $\mathrm{k}[t]$.
b) Show that for $Y=V(x y-1)$ in $\mathbb{A}^{2} A(Y)$ is isomorphic to $\mathrm{k}\left[t, t^{-1}\right]$.
c) Let $f \in \mathrm{k}[x, y]$ be an irreducible quadratic polynomial. Show that for $Y=V(f)$ $A(Y)$ is isomorphic to $A(Y)$ from \mathbf{a} or \mathbf{b} and give the corresponding explicit condition on f.
d) What are the additional possibilities in \mathbf{c} if we drop the condition that f be irreducible?
4. Let $f_{1}, f_{2} \in \mathrm{k}\left[x_{1}, \ldots, x_{n}\right]$ be such that each irreducible factor of f_{1} and f_{2} occurs only once. Show that $V\left(f_{1}\right)=V\left(f_{2}\right)$ implies $f_{1}=c f_{2}$ for some $c \in \mathrm{k}^{\times}=\mathrm{k} \backslash\{0\}$.
5. * (Gathmann lecture notes Exercise 1.9) Prove that every affine variety in \mathbb{A}^{n} consisting of only finitely many points can be written as the zero locus of n polynomials.
6. (Hartshorne Exercise I.3.2a) Show that $\mathbb{A}^{1} \rightarrow \mathbb{A}^{2}, t \mapsto\left(t^{2}, t^{3}\right)$, is a homeomorphism onto $Y=V\left(y^{2}-x^{3}\right)$, but $k[t]=A\left(\mathbb{A}^{1}\right)$ is not isomorphic to $A(Y)$.

Due on Friday, February 27.

