Prof. Dr. P. Nelson D-MATH Algebraic Geometry

Sheet 3

Unless stated otherwise k denotes an algebraically closed field.

1. Consider $Y = V(\{x^2 - y^3\}) \subseteq \mathbb{A}^2$ and the function $f: Y \to \mathbb{A}^1 = k$ given by

$$f(x,y) = \begin{cases} \frac{x}{y} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}.$$

Show that

- a) f is continuous.
- **b)** f is not a regular function.
- c) f restricts to a regular function on $Y_y = Y_x$.
- 2. 1. (lecture notes) Let $X := \mathbb{A}^2 := \text{Specm } k[x_1, x_2]$ and $U := \mathbb{A}^2 \{(0, 0)\}$. Show that the restriction map $A(X) = \mathcal{O}(X) \to \mathcal{O}(U)$ is an isomorphism.
 - 2. (lecture notes) Show that the quasi-affine variety $U := \mathbb{A}^2 \{(0,0)\}$ is not isomorphic to any affine variety.
- **3.** (lecture notes) Let X be an affine variety with affine coordinate ring A := A(X), let $a \in A$, let U be an open subset of $D_X(a)$. Recall that $\iota_{X,a} : X_a \to X$ is the morphism of affine varieties with image $D_X(a)$ corresponding to the localization-at-a map $\iota_{X,a}^{\sharp} : A \to A(X_a) = A_a$ of affine coordinate rings. Set $V := \iota_{X,a}^{-1}(U)$. Show that a function $f : U \to k$ belongs to $\mathcal{O}(U)$ if and only if $f|_{X,a} := f \circ \iota_{X,a}$ belongs to $\mathcal{O}(V)$.
- **4.** (lecture notes)
 - a) Verify for a quasi-affine variety X that morphisms $X \to \mathbb{A}^1$ are the same as regular functions $X \to k$.

b) * Verify for an *affine* variety X and a quasi-affine variety Y that morphisms of quasi-affine varieties

$$f: Y \to X$$

are in bijection with k-algebra morphisms

$$\varphi: A(X) \to \mathcal{O}(Y)$$

under the mutually inverse maps $f \mapsto f^{\sharp}$ and $\varphi \mapsto \varphi^{\flat}$, where $f^{\sharp}(a) := a \circ f$ and $\varphi^{\flat}(\beta) := \operatorname{pt}(\operatorname{eval}_{\beta} \circ f)$ for $a \in A(X), \beta \in Y$.

- c) Explain how the second part of this exercise specializes to the first part.
- 5. (lecture notes) Let (X, \mathcal{O}_X) be a prevariety and $\alpha \in X$. Verify the following assertions:
 - a) The neighborhoods U of α form a directed set with respect to containment. The stalk of \mathcal{O}_X at α is defined to be

$$\mathcal{O}_{X,\alpha} := \varinjlim_{U \ni \alpha} \mathcal{O}_X(U).$$

It is naturally a k-algebra.

- **b)** For any neighborhood U of α , the evaluation-at- α morphism $\operatorname{eval}_{\alpha} : \mathcal{O}_X(U) \to k$ induces a morphism $\mathcal{O}_{X,\alpha} \to k$. We denote the latter also by $\operatorname{eval}_{\alpha}$.
- c) The k-algebra $\mathcal{O}_{X,\alpha}$ is a local ring. Its unique maximal ideal is the kernel \mathfrak{m}_{α} of $\operatorname{eval}_{\alpha} : \mathcal{O}_{X,\alpha} \to k$, and we have $\mathcal{O}_{X,\alpha}/\mathfrak{m}_{\alpha} = k$ as k-algebras.
- **d)** For any affine neighborhood Y of α , the open neighborhoods $D_Y(a)$ of α (taken over $a \in A(Y)$ with $a(\alpha) \neq 0$) form a directed set that is cofinal in the the directed set of all neighborhoods of α . The restriction maps $\mathcal{O}_X(U) \to \mathcal{O}_X(D_Y(a))$ for $\alpha \in D_Y(a) \subset U$ thereby induce an identification

$$\mathcal{O}_{X,\alpha} = \varinjlim_{D_Y(a) \ni \alpha} \mathcal{O}_X(D_Y(a)) = \varinjlim_{D_Y(a) \ni \alpha} A(Y)_a \cong A(Y)_{\mathfrak{m}}$$

where \mathfrak{m} is the maximal ideal $\mathfrak{m} := \{a \in A(Y) : a(\alpha) = 0\}$ of A(Y).

- **6.** (cf. Hartshorne Exercise I.3.3) Let Y and X be quasi-affine varieties and $f: Y \to X$ be a morphism. Let $\beta \in Y$. Show
 - **a)** For $U \subseteq X$ open the maps $f_U^{\sharp} : \mathcal{O}_X(U) \to \mathcal{O}_Y(f^{-1}(U))$ induce a map $f_{\beta}^{\sharp} : \mathcal{O}_{X,f(\beta)} \to \mathcal{O}_{Y,\beta}$ of k-algebras such that $(f_{\beta}^{\sharp})^{-1}(\mathfrak{m}_{\beta}) = \mathfrak{m}_{f(\beta)}$.
 - **b)** f is an isomorphism if and only if f is a homeomorphism and f_{β}^{\sharp} is an isomorphism for all β .
 - c) If Y is irreducible and f(Y) is dense in X, then f_{β}^{\sharp} is injective for all β .

Due on Friday, March 13.