Sheet 4

In the following exercises we always work over an algebraically closed field.

- 1. Let X be the projective variety $V(x_0x_2^2 x_1^3 + x_0^2x_1) \subset \mathbb{P}^2$. For each $i \in \{0, 1, 2\}$, compute the affine variety $X_i \subset \mathbb{P}^2_i \cong \mathbb{A}^2$ (notation as in lecture) obtained by dehomogenizing.
- **2.** (d-uple or Veronese embedding, cf. Hartshorne Exercise I.2.12) Let $n, d \in \mathbb{Z}_{>0}$. Consider the monomials of degree d in the n+1 variables x_0, \ldots, x_n , i.e. elements of the form $x^i := x_0^{i_0} \ldots x_n^{i_n}$ where $i \in \mathbb{Z}_{\geq 0}^{n+1}$ is a multi-index such that $i_0 + \cdots + i_n = d$. We define $\nu_d : \mathbb{P}^n \to \mathbb{P}^N$ by $[x_0, \ldots, x_n] \mapsto [(x^i)_i]$ called d-uple or Veronese embedding of \mathbb{P}^n in \mathbb{P}^N . For example, if n = 1, d = 2, then N = 2, and the image of the 2-uple embedding of \mathbb{P}^1 in \mathbb{P}^2 is a conic. Show
 - **a)** $N = \binom{n+d}{n} 1$
 - **b)** Let $\theta: k[(y_i)_i] \to k[x_0, \dots, x_n]$ be the homomorphism defined by sending $y_i \mapsto x^i$ and let \mathfrak{a} be the kernel of θ . Then \mathfrak{a} is a homogeneous prime ideal and so $V(\mathfrak{a})$ is an irreducible projective variety in \mathbb{P}^N .
 - c) The image of ν_d is $V(\mathfrak{a})$.
 - **d)** ν_d is a homeomorphism of \mathbb{P}^n onto $V(\mathfrak{a})$.
 - e) * The ideal a is generated by

$$y_i y_j - y_k y_l \quad i + j = k + l \ .$$

3. (Harris Exercise 1.3) Let Γ be a finite subset of \mathbb{P}^n of cardinality $|\Gamma| = d$. Show that if Γ is not contained in a line in \mathbb{P}^n , i.e. a set $V(f_1, \ldots, f_{n-1})$, where $f_j \in k[x_0, \ldots, x_n]_1$ are linearly independent, then Γ may be described as the zero locus of polynomials of degree d-1 or less.

Hint: Induction on d. The induction start is d = 3.

4. * (Harris Example 1.2) Let Γ be a finite subset of \mathbb{P}^n of cardinality $|\Gamma| = d$. We say that Γ is in general position if any subset of Γ whose lift to \mathbb{A}^{n+1} is linearly dependent has cardinality > n+1. (If $d \geq n+1$ this is the same as saying that the lift of any n+1 points of Γ do not lie in a hyperplane in \mathbb{A}^{n+1} .) Show that if $d \leq 2n$ and Γ is in general position, then Γ may be described as the zero set of quadratic polynomials.

Hint: Read the proof for d = 2n in Harris.

- **5.** (Rational normal curve) The image of $\nu_d : \mathbb{P}^1 \to \mathbb{P}^d$ composed with an element of the projective linear group $\mathrm{PGL}_{d+1}(k)$ is called a rational normal curve C. In the special case d=3 it is called twisted cubic curve. Show
 - a) Any d+1 distinct points on C are in general position.

Hint: Vandermonde determinant

- **b)** (Harris Example 1.17) Let $[\mu_i, \nu_i] \in \mathbb{P}^1$, $1 \leq i \leq d+1$, be d+1 distinct points. Set $H_i(x_0, x_1) = \prod_{j \neq i} (\mu_j x_0 \nu_j x_1)$. Then $[x_0, x_1] \mapsto [(H_i(x_0, x_1))_{1 \leq i \leq d+1}]$ is a parametrization of a rational normal curve sending $[\nu_i, \mu_i]$ to the image of the *i*th standard basis vector in \mathbb{P}^d .
- c) (Harris Theorem 1.18) If Γ is a subset in \mathbb{P}^d of cardinality d+3 and in general position, there is a unique rational normal curve passing through Γ .

Hint: For the existence determine the image of [0,1] and [1,0] in the parametrization in **b**.

6. (Projection from a point, Harris Example 3.4) Let $\mathbb{P}^{n-1} \subseteq \mathbb{P}^n$ be a hyperplane and $p \in \mathbb{P}^n - \mathbb{P}^{n-1}$. Define

$$\pi_p: \mathbb{P}^n - \{p\} \to \mathbb{P}^{n-1}, \ q \mapsto \mathbb{P}^{n-1} \cap \text{line through } p \text{ and } q$$

and call it projection from the point p to the hyperplane \mathbb{P}^{n-1} . We can choose homogeneous coordinates on \mathbb{P}^n such that π_p is given by $[x_0, \ldots, x_n] \mapsto [x_0, \ldots, x_{n-1}]$.

- a) Verify that π_p is a morphism.
- **b)** Set n = 3. Find the equations of $\pi_p(C)$ for C the twisted cubic and p = [1, 0, 0, 1] and p = [0, 1, 0, 0].
- c) Show that if C is a rational normal curve in \mathbb{P}^n and $p \in C$, then $\overline{\pi_p(C-p)}$ is a rational normal curve in \mathbb{P}^{n-1} .

Due on Friday, March 20.