Sheet 9

Unless stated otherwise we work over an algebraically closed field k.

1. Let X be a variety. A subset of X is locally closed if it is the intersection of an open and a closed subset of X. Show
a) A subset of X is locally closed if and only if it is open in its closure.
b) A subset of X is constructible if and only if it is a finite disjoint union of locally closed subsets.
c) Every constructible subset of X contains an open dense subset of its closure.
2. Let G be an algebraic group acting on a variety X. Show
a) Each orbit $G x, x \in X$, is a locally closed subset of X.

Hint: First show that $G x$ is constructible, then use 1c.
b) The boundary $\overline{G x} \backslash G x$ of $G x$ is a union of orbits of strictly lower dimension. Thus, orbits of minimal dimension are closed.
c) If G is connected, then each orbit is an irreducible subset of X.
3. Let A be an algebraic group. A is called abelian variety if it is connected and proper. Show
a) Let X, Y, Z be varieties. Let X be proper and Y be irreducible. Let $\varphi: X \times Y \rightarrow Z$ be a morphism. If there is a $y_{0} \in Y$ such that $\varphi\left(\cdot, y_{0}\right): X \rightarrow Z$ is constant, then there is a morphism $\psi: Y \rightarrow Z$ such that $\varphi(\cdot, y)=\psi(y)$ for all $y \in Y$.
b) Let A and B be abelian varieties. Then, any morphism $\alpha: A \rightarrow B$ is the composite of a group homomorphism with a translation. In particular, if $\alpha\left(1_{A}\right)=1_{B}$ then α is a group homomorphism.
c) If A is an abelian variety, then the group law is commutative.

Hint: Consider the inverse morphism $\iota: A \rightarrow A, a \mapsto a^{-1}$.
4. (Valuative criterion for properness) Let X be an irreducible variety. Assume that for all irreducible closed $Z \subseteq X$ and for all valuation rings R of $k(Z)$ containing k there is a $p \in Z$ such that $\mathcal{O}_{Z, p} \subseteq R$. Proceed as follows to show that X is proper.
a) Show that it suffices to prove: Given

1. Y an affine variety,
2. $V \subseteq Z \times Y$ irreducible closed,
3. $p_{Y} \mid V: V \rightarrow Y$ and $p_{Z} \mid V: V \rightarrow Z$ dominant, where $p_{Y, Z}: Z \times Y \rightarrow Y, Z$ denote the projections,
it follows that $p_{Y} \mid V$ surjects.
b) Prove the implication of a by applying the following lemma: Let A be an integral domain contained in a field $K \supseteq k$ and $\phi: A \rightarrow k$ be a homomorphism. Then there exists a valuation ring B of K containing A and a homomorphism $\Phi: B \rightarrow k$ such that $\Phi \mid A=\phi$.
4. Compute the integral closure of
a) $k[x, y] /\left(y^{2}-x^{3}\right)$
b) $k[x, y] /\left(y^{2}-x^{2}-x^{3}\right)$
c) $k\left[x_{0}, x_{1}, \ldots, x_{n}\right] /\left(x_{0}^{2}+x_{1}^{2}+\cdots+x_{r}^{2}\right), n \geq r \geq 2$, char $k \neq 2$.
