Test exam solutions

1. (Groups)
2. (Result from the course) Prove that if H is a normal subgroup of a group G, there is a group structure on the set G / H of right H-cosets of G such that the projection map $\pi: G \rightarrow G / H$ is a homomorphism. Prove that a homomorphism $\varphi: G \rightarrow G_{1}$, where G_{1} is another arbitrary group, can be expressed in the form $\varphi=\tilde{\varphi} \circ \pi$ for some homomorphism $\tilde{\varphi}: G / H \rightarrow G_{1}$ if and only if $\operatorname{ker}(\varphi) \supset H$.
Solution. We define a group structure on G / H as follows: (1) the identity element is $1_{G / H}=H$, the H-coset of the identity element in $G ;(2)$ the inverse of a coset $x H$ is $x^{-1} H$; (3) the product of two cosets $x H$ and $y H$ is $x y H$.
Before checking that these data define a group structure, we must check that the inverse and product are well-defined: the cosets $x^{-1} H$ (resp. $x y H$) should be independent of the choice of x (resp. x and y) in their respective cosets. For the product (the inverse being similar), this means that if we replace x by $x h_{1}$ and y by $y h_{2}$, where h_{1} and h_{2} are in H, we should have $x y H=x h_{1} y h_{2} H$. This is indeed the case, because H is normal in G : we have $x h_{1} y h_{2}=x y \cdot y^{-1} h_{1} y h_{2}=x y h_{3}$ where $h_{3}=y h_{1} y^{-1} h_{2}$ belongs to H, so $x h_{1} y h_{2} H=x y h_{3} H=x y H$.
Once this is done, it is easy to check all axioms for a group. For instance, associativity follows from the definition of the product.

$$
(x H) \cdot((y H)(z H))=x y z H=(x H y H) \cdot z H .
$$

For the second part, suppose first that $\varphi=\tilde{\varphi} \circ \pi$. Then for $h \in H$, we obtain $\varphi(h)=\tilde{\varphi}(\pi(h))=1$ since $\pi(h)=1$ in G / H. Conversely, assume that the kernel of φ contains H. We claim that a map $\tilde{\varphi}: G / H \longrightarrow G_{1}$ is well-defined by $\tilde{\varphi}(x H)=$ $\varphi(x)$. Indeed, if we replace x by $x h_{1}$, where $h_{1} \in H$, we obtain $\varphi\left(x h_{1}\right)=\varphi(x)$ since $h_{1} \in \operatorname{ker}(\varphi)$. Now we have

$$
\varphi(x)=\tilde{\varphi}(x H)=\tilde{\varphi}(\pi(x))
$$

so $\varphi=\tilde{\varphi} \circ \pi$. Moreover, $\tilde{\varphi}$ is a homomorphism: we have

$$
\tilde{\varphi}(x H y H)=\tilde{\varphi}(x y H)=\varphi(x y)=\varphi(x) \varphi(y)=\tilde{\varphi}(x H) \tilde{\varphi}(y H) .
$$

2. Which of the following statements are true (justify with a proof, a reference to a result of the course, or a counterexample):
A. Every finite abelian group is isomorphic to a direct product of cyclic groups.
B. Every subgroup of an abelian group is solvable.
C. If a group G acts on a set X, then the stabilizer of a point $x \in X$ is a normal subgroup of G.
Solution. (A) True, by the structure theorem of finitely generated abelian groups.
(B) True, since a subgroup of an abelian group is abelian, and an abelian groups is solvable.
(C) False in general; for instance, if $n \geq 3$, and S_{n} acts on $\{1, \ldots, n\}$ by $\sigma \cdot n=\sigma(n)$, then the stabilizer H of 1 is not normal: its conjugates are the stabilizers of other elements, and these are not equal (because $n \geq 3$).
3. Let G be a group, H a subgroup of G and $\xi \in G$ an element such that $\xi H \xi=H$. Prove that $\xi^{2} \in H$ and that $\xi H \xi^{-1}=H$ (which means that ξ belongs to the normalizer of H in G). Conversely, prove that if $\eta \in G$ is some element such that $\eta^{2} \in H$ and $\eta \in N_{G}(H)$, then $\eta H \eta=H$.
Solution. From $\xi H \xi=H$, taking the element 1 in H, we get $\xi^{2} \in H$. Now we write

$$
\xi H \xi^{-1}=\xi H \xi \xi^{-2}=H \xi^{-2}=H
$$

since ξ^{-2} also belongs to H.
Conversely, we have

$$
\eta H \eta=\eta H \eta^{2} \eta^{-1}=\eta H \eta^{-1}=H
$$

if $\eta^{2} \in H$ and η normalizes H.

2. (Rings)

1. (Result from the course) Prove that in a principal ideal domain A, every non-zero element has a unique factorization into irreducible elements.
Solution. Existence: by contradiction, let $x \in A$ be a non-zero element without factorization. Then x is not irreducible, so we can write $x=y_{1} y_{1}^{\prime}$ with neither y_{1} nor y_{1}^{\prime} being a unit. One of these at least has no factorization, since otherwise x would have one. We may assume that y_{1} has no factorization. Then we have

$$
x A \subset y_{1} A
$$

and $x A \neq y_{1} A$, since y_{1}^{\prime} is not a unit.
Again y_{1} is not irreducible so $y_{1}=y_{2} y_{2}^{\prime}$ for some non-units y_{2} and y_{2}^{\prime}, one of which at least (say y_{2}) has no factorization. Iterating, we obtain in this manner an infinite sequence

$$
x A \subset y_{1} A \subset y_{2} A \subset \cdots
$$

where all inclusions are strict. Let I be the union of the principal ideals in this sequence. Then I is an ideal of A, as one checks using the fact that the union is increasing. Since A is a principal ideal domain, there exists $z \in A$ such that $I=z A$. Since $z \in A$, there exists a y_{j} such that $z \in y_{j} A$. But then $z A \subset y_{j} A \subset$ $I=z A$, so that $z=u y_{j}$ for some unit $u \in A^{\times}$. This then contradicts the fact that $y_{j} A=z A$ is a proper subset of $y_{j+1} A$.

Uniqueness: If there exists elements with two factorizations, let x be one with factorizations

$$
x=u_{1} p_{1}^{n_{1}} \cdots p_{k}^{n_{k}}=u_{2} q_{1}^{m_{1}} \cdots q_{l}^{m_{l}}
$$

with irreducible elements p_{i} and q_{j} and $n_{i} \geq 1, m_{j} \geq 1$, chosen so that the sum

$$
\sum_{i} n_{i}+\sum_{j} m_{j}
$$

is as small as possible.
Then p_{1} divides the right-hand side, so (because A is a principal ideal domain) must divide one of the factors $q_{j}^{m_{j}}$, so $p_{1} A$ must be equal to one of the $q_{j} A$. Dividing out by p_{1}, we obtain two factorizations with smaller sum of exponents, a contradiction.
2. State the structure theorem for finitely-generated modules over a principal ideal domain.
Solution. Let A be a principal ideal domain, M a finitely generated A-module.
(1) There exists an integer $n \geq 0$ and an isomorphism

$$
M \xrightarrow{\sim} A^{n} \oplus M_{\text {tors }}
$$

where

$$
M_{\text {tors }}=\{m \in M \mid a m=0 \text { for some } a \neq 0\}
$$

is the torsion submodule of M.
(2) There exist $m \geq 0$ and irreducible elements r_{1}, \ldots, r_{m}, such that the ideals $r_{i} A$ are pairwise coprime, $M_{\text {tors }}\left(r_{i}\right) \neq 0$ and

$$
M_{\text {tors }}=\bigoplus_{i=1}^{m} M_{\text {tors }}\left(r_{i}\right)
$$

where we denote

$$
N(r)=\left\{n \in N \mid r^{k} n=0 \text { for some } k \geq 0\right\}
$$

the r-primary submodule of any A-module N, for any irreducible element $r \in A$.
(3) For each i, there exist $s_{i} \geq 1$ and a sequence

$$
1 \leq \nu_{i, 1} \leq \cdots \leq \nu_{i, s_{i}}
$$

and an isomorphism

$$
M_{\text {tors }}\left(r_{i}\right)=M\left(r_{i}\right) \xrightarrow{\sim} \bigoplus_{1 \leq j \leq s_{i}} A / r_{i}^{\nu_{i, j}} A .
$$

3. Which of the following statements are true (justify with a proof, a reference to a result of the course, or a counterexample):
A. If I and J are ideals in a commutative ring A, then $A /(I \cap J)$ is isomorphic to $A / I \times A / J$.
B. Any integral domain A is contained in a field K.
C. Any non-zero commutative ring contains a prime ideal.
D. If A is a commutative ring and $I \subset A$ is a prime ideal, then A / I is a field.

Solution. (A) False in general: for instance, take $I=J=0$ if A is an integral domain (then A is not isomorphic to $A \times A$).
(B) True: one can take K to be the field of fractions of A.
(C) True: in fact, such a ring contains a maximal ideal, and a maximal ideal is also a prime ideal.
(D) False: A / I is an integral domain, but not necessarily a field; for instance, take $A=\mathbb{C}[X, Y]$ and $I=X A$; then $A / I \simeq \mathbb{C}[Y]$ is an integral domain, so I is a prime ideal, but not a field.
4. Let K be a field and $n \geq 2$ an integer. Let I_{n} denote the principal ideal generated by X^{n} in $K[X]$, and let $A_{n}=K[X] / I_{n}$. Compute the group A_{n}^{\times}of units in A_{n}. Prove that A_{n} has a unique maximal ideal; which ideal is it?
Solution. Let $x \in A_{n}$ be the image of X. It is easy to see that any $y \in A_{n}$ can be written uniquely

$$
A_{n}=a_{0}+a_{1} x+\cdots+a_{n-1} x^{n-1}
$$

where the a_{i} are in K. We have then

$$
A_{n}^{\times}=\left\{y \in A_{n} \mid y=a_{0}+a_{1} x+\cdots+a_{n-1} x^{n-1} \text { with } a_{0} \neq 0\right\} .
$$

Indeed, note that in writing y as above, we have $a_{0}=P(0)$, where $P \in K[X]$ is any polynomial with image y. So if y is a unit, with $y z=1$ for some $z \in A_{n}$, we get $1=P(0) Q(0)=a_{0} Q(0)$, where Q has image z. This means that a_{0} is non-zero, and this gives the inclusion of the units of A_{n} in the right-hand side.
Conversely, if $a_{0} \neq 0$, then we look for an inverse of y in the form

$$
z=a_{0}^{-1}+b_{1} x+\cdots+b_{n-1} x^{n-1} .
$$

The equations expressing the relation $y z=1$ are linear equations for the coefficients b_{1}, \ldots, b_{n-1}, and one sees that they form a triangular system with non-zero diagonal coefficients. Hence there is a solution.
The unique maximal ideal of A_{n} is the principal ideal I generated by x. Indeed, we see that A_{n} / I is isomorphic to K by mapping y to a_{0}, so that I is a maximal ideal.
Furthermore, if J is any proper ideal, it is contained in I, so that I is the unique maximal ideal: otherwise, there would exist some element y in J with $a_{0} \neq 0$ (since $a_{0}=0$ implies that y is a multiple of x), and then $y \in A_{n}^{\times}$would show that $J=A_{n}$.

3. (Fields)

1. (Result from the course) Prove that given a field K and a non-constant polynomial $P \in K[X]$, there exists an extension L / K and an element $x \in L$ such that $P(x)=0$.
Solution. Let $Q \in K[X]$ be an irreducible factor of P, which exists since it is not constant. We will find an extension L / K where Q has a root, and such a root will be by construction a root of P as well. We write

$$
Q=\sum_{i=0}^{d} a_{i} X^{i}
$$

for some $a_{i} \in K$.
Consider $\tilde{L}=K[X] / Q K[X]$ and $\tilde{x} \in \tilde{L}$ the image of X under the projection $\pi: K[X] \rightarrow L$. Then \tilde{L} is a field, and $\tilde{Q}(\tilde{x})=0$, where

$$
\tilde{Q}=\sum_{i} \pi\left(a_{i}\right) X^{i}
$$

Moreover, there is an homomorphism $K \rightarrow \tilde{L}$ by composing the injection of K in $K[X]$ and the projection. Since both rings are fields, this is an injective homomorphism, which we denote ι.
The only issue is that \tilde{L} is not literally an extension of K. One goes around this by defining L as the disjoint union of K and the complement in \tilde{L} of the image of the injective homomorphism $K \longrightarrow \tilde{L}$. There is a bijection $f: \tilde{L} \rightarrow L$ by mapping $\iota(y) \in \tilde{L}$ to $y \in K \subset L$ for any $y \in K$, and mapping $y \in \tilde{L}-\iota(K)$ to $y \in L$. One then defines a field structure on L so that f is an isomorphism of fields, by "transport of structure". The image of \tilde{x} in L under f is then a root of Q in L.
2. Which of the following statements are true (justify with a proof, a reference to a result of the course, or a counterexample):
A. If L / K is a finite extension and L contains some element x for which the minimal polynomial $\operatorname{Irr}(x ; K)$ of x is separable, then L / K is separable.
B. If K is a finite field, then its order is a prime number.
C. If K is a field and L_{1}, L_{2} are algebraically closed fields containing K, then L_{1} is isomorphic to L_{2}.
Solution. (A) False, this condition should be true at least for elements x generating L over K.
(B) False, the order is a power of a prime number.
(C) False (fields which are algebraically closed and algebraic over K) are isomorphic: for instance the fields $\overline{\mathbb{Q}}$ of algebraic numbers and \mathbb{C}, which are both algebraically closed and contain \mathbb{Q} are not isomorphic (one is countable, and the other not).

4. (Galois theory)

1. (Result from the course) Given a field K, a separable non-constant polynomial $P \in K[X]$ of degree $d \geq 1$ and a splitting field L / K of P, explain the construction of an injective homomorphism $\operatorname{Gal}(L / K) \rightarrow S_{d}$.
Solution. Let $Z \subset L$ be the set of roots of P in L. By definition of a splitting field and of the Galois group $G=\operatorname{Gal}(L / K)$, we have an action of G on Z by $\sigma \cdot z=\sigma(z)$. This gives a homomorphism

$$
f: G \rightarrow S_{Z}
$$

This is injective because if $f(\sigma)=1$, then $\sigma(z)=z$ for all $z \in Z$, and since Z generates L over K by definition, this implies that σ is the identity.
Now fix an enumeration of the roots $Z=\left\{z_{1}, \ldots, z_{d}\right\}$, where $d=\operatorname{deg}(P)$. This gives an isomorphism $S_{Z} \rightarrow S_{d}$, and by composing, an injective homomorphism $G \rightarrow S_{d}$
2. (Result from the course) State and sketch the proof of the classification of Kummer extensions for cyclic extensions of degree d over a field K containing the d-th roots of unity.
Solution. For K of characteristic coprime to d containing μ_{d}, a finite extension L / K is Galois with Galois group isomorphic to $\mathbb{Z} / d \mathbb{Z}$ if and only if there exists $y \in L$ such that $L=K(y)$ and $y^{d} \in K^{\times}$, and if moreover $y^{e} \notin K$ for any divisor $e<d$ of $d .{ }^{1}$
Step 1 ("If"). Let $z=y^{d} \in K^{\times}$. All the roots of the equation $X^{d}=z$ are of the form $x=\xi y$ with $\xi \in \mu_{d} \subset K$, so L / K is normal. The assumption also shows that L / K is also separable. Then the map

$$
\sigma \mapsto \frac{\sigma(y)}{y}
$$

is an injective homomorphism of its Galois group to $\mu_{d} \simeq \mathbb{Z} / d \mathbb{Z}$. It is surjective because otherwise the image would be a subgroup $a \mathbb{Z} / d \mathbb{Z}$ where a divides d and $a>1$. But then $y^{d / a}$ would be in K by Galois-invariance.
Step 2 ("Only if"). Let L / K be cyclic of degree d. Let ξ be a generator of μ_{d} and σ a generator of the Galois group of L / K. For some $t \in K$, the expression

$$
y=t+\xi^{-1} \sigma(t)+\cdots+\xi^{-(d-1)} \sigma^{d-1}(t)
$$

is non-zero and satisfies $\sigma(y)=\xi y$. From this it follows that $L=K(y)$ and $y^{d} \in K^{\times}$, and moreover that $y^{e} \notin K$ for $e \mid d$ and $e<d$ (because y^{e} is not Galois-invariant: $\sigma\left(y^{e}\right)=\xi^{e} y^{e}$, and $\xi^{e} \neq 1$ since ξ generates $\left.\mu_{d}\right)$.
3 . Which of the following statements are true (justify with a proof, a reference to a result of the course, or a counterexample):
A. If L / K is a finite extension of finite fields, then L / K is a Galois extension.

[^0]B. For any field K of characteristic 0 , any $n \geq 2$, and $L=K(y)$ where $y^{n}=2$, the extension L / K is a Galois extension.
C. Any radical extension has a solvable Galois group.

Solution. (A) True: result from the course.
(B) False: it may not be normal if $n \geq 3$, for instance $K=\mathbb{Q}, n=3$.
(C) False: a radical extension might not be a Galois extension.
4. Let L / K be a finite Galois extension with Galois group G. Let G^{\prime} denote the commutator subgroup $[G, G]$ generated by all commutators $x y x^{-1} y^{-1}$ in G. Show that $L^{G^{\prime}} / K$ is a Galois extension with $\operatorname{Gal}\left(L^{G^{\prime}} / K\right)$ abelian. Show that any Galois extension E / K with $E \subset L$ and $\operatorname{Gal}(E / K)$ abelian is contained in $L^{G^{\prime}}$.
Solution. We know that G^{\prime} is a normal subgroup of G because

$$
z[x, y] z^{-1}=\left[z x z^{-1}, z y z^{-1}\right]
$$

so by Galois theory, the extension $L^{G^{\prime}} / K$ is indeed a Galois extension. Its Galois group is G / G^{\prime}, which is abelian.
If $L / E / K$ is such that E / K is Galois with abelian Galois group, then the subgroup $H=\operatorname{Gal}(L / E)$ is normal with G / H abelian. It follows that $H \supset G^{\prime}$ (because any commutator maps to 1 in G / H), and therefore by the Galois correspondance that $E \subset L^{G^{\prime}}$.
5. Let K be a field of characteristic zero, and let \bar{K} be an algebraic closure of K. Let x and y be elements of \bar{K} such that $K(x)$ and $K(y)$ are solvable extensions. Prove that $K(x+y)$ is also solvable.
Solution. We have $K(x+y) \subset K(x, y)=K(x)(y)$. Let $L_{1}\left(\right.$ resp. $\left.L_{2}\right)$ be a radical extension of K acontaining $K(x)$ (resp. $K(y)$). Then $K(x)(y) \subset L_{1}(y) \subset L_{1} L_{2}$, where $L_{1} L_{2}$ is the extension generated by $L_{1} \cup L_{2}$ in \bar{K}. But writing L_{1} first, and then L_{2}, as obtained by adjoining successive roots of radical equations, we see that $L_{1} L_{2}$ is also a radical extension. Hence $K(x+y)$ is solvable.

[^0]: ${ }^{1}$ This last part was not in the course but it useful to get "if and only if".

