D-MATH Algebra IT FS 15
Prof. Emmanuel Kowalski

Test exam solutions

1. (Groups)

1. (Result from the course) Prove that if H is a normal subgroup of a group G,
there is a group structure on the set G/H of right H-cosets of G such that the
projection map 7 : G — G/H is a homomorphism. Prove that a homomorphism
¢ : G — (1, where (G1 is another arbitrary group, can be expressed in the form
¢ = ¢ o for some homomorphism ¢ : G/H — G if and only if ker(p) D H.
Solution. We define a group structure on G/ H as follows: (1) the identity element
is 1/ = H, the H-coset of the identity element in G; (2) the inverse of a coset
rH is v~ H; (3) the product of two cosets H and yH is xyH.

Before checking that these data define a group structure, we must check that the
inverse and product are well-defined: the cosets = 'H (resp. xyH) should be
independent of the choice of x (resp. = and y) in their respective cosets. For the
product (the inverse being similar), this means that if we replace x by xhy and y by
yho, where hy and hy are in H, we should have xyH = zhiyhoH. This is indeed
the case, because H is normal in G: we have zhiyhy = zy -y~ 'hiyhs = xyhs
where hs = yhiy~'hy belongs to H, so xhiyhoH = xyhsH = xyH.

Once this is done, it is easy to check all axioms for a group. For instance, asso-
ciativity follows from the definition of the product.

(zH) - ((yH)(zH)) = 2yzH = (tHyH) - zH.

For the second part, suppose first that ¢ = @ ow. Then for h € H, we obtain
w(h) = ¢(m(h)) = 1 since m(h) = 1 in G/H. Conversely, assume that the kernel of
¢ contains H. We claim that a map ¢ : G/H — G is well-defined by ¢(zH) =
o(z). Indeed, if we replace x by xhy, where hy € H, we obtain p(xh;) = ()
since hy € ker(y). Now we have

p(x) = ¢(zH) = §(m(x))
so ¢ = @ o 7. Moreover, ¢ is a homomorphism: we have
G(xHyH) = o(zyH) = p(zy) = p(x)p(y) = $(xH)p(yH).

2. Which of the following statements are true (justify with a proof, a reference to a
result of the course, or a counterexample):

A. Every finite abelian group is isomorphic to a direct product of cyclic groups.
B. Every subgroup of an abelian group is solvable.
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C. If a group G acts on a set X, then the stabilizer of a point € X is a normal
subgroup of G.

Solution. (A) True, by the structure theorem of finitely generated abelian groups.
(B) True, since a subgroup of an abelian group is abelian, and an abelian groups
is solvable.

(C) False in general; for instance, if n > 3, and S, actson {1,...,n} by o-n = o(n),
then the stabilizer H of 1 is not normal: its conjugates are the stabilizers of other
elements, and these are not equal (because n > 3).

3. Let G be a group, H a subgroup of G and £ € GG an element such that EH = H.
Prove that ¢ € H and that EH¢™! = H (which means that ¢ belongs to the
normalizer of H in G). Conversely, prove that if n € G is some element such that
n? € H and n € Ng(H), then nHn = H.

Solution. From ¢H¢ = H, taking the element 1 in H, we get £ € H. Now we
write

EHE ' =¢HEE? = HE? = H,

since €72 also belongs to H.

Conversely, we have
nHy=nHnp*n ' =nHn ' = H

if n2 € H and 7 normalizes H.

2. (Rings)

1. (Result from the course) Prove that in a principal ideal domain A, every non-zero
element has a unique factorization into irreducible elements.
Solution. Existence: by contradiction, let x € A be a non-zero element without
factorization. Then z is not irreducible, so we can write z = y1y] with neither y;
nor y; being a unit. One of these at least has no factorization, since otherwise x
would have one. We may assume that y; has no factorization. Then we have

xA C iy A

and xA # y A, since ] is not a unit.
Again y; is not irreducible so y; = yoy) for some non-units yo and yh, one of
which at least (say y2) has no factorization. Iterating, we obtain in this manner
an infinite sequence

TA Cy1ACypAC - -

where all inclusions are strict. Let I be the union of the principal ideals in this
sequence. Then [ is an ideal of A, as one checks using the fact that the union
is increasing. Since A is a principal ideal domain, there exists z € A such that
I = zA. Since z € A, there exists a y; such that z € y;A. But then zA C y;A C
I = zA, so that z = uy; for some unit u € A*. This then contradicts the fact
that y;A = zA is a proper subset of y; 1 4.
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Uniqueness: If there exists elements with two factorizations, let x be one with
factorizations

_ n1 ng __ mi my
T=uUipy =Py = u2qy - qp

with irreducible elements p; and ¢; and n; > 1, m; > 1, chosen so that the sum
St
( J

is as small as possible.

Then p; divides the right-hand side, so (because A is a principal ideal domain)
must divide one of the factors q;nj, so ptA must be equal to one of the g;A.
Dividing out by pi, we obtain two factorizations with smaller sum of exponents,
a contradiction.

. State the structure theorem for finitely-generated modules over a principal ideal
domain.

Solution. Let A be a principal ideal domain, M a finitely generated A-module.
(1) There exists an integer n > 0 and an isomorphism

M ; An 5> Mtors

where
Miors = {m € M | am = 0 for some a # 0}

is the torsion submodule of M.

(2) There exist m > 0 and irreducible elements 7y, ..., 7, such that the ideals
r;A are pairwise coprime, My,.s(r;) # 0 and

m
Miors = @ Mtors(ri)
i=1
where we denote
N(r)={n € N | r*n =0 for some k > 0}

the r-primary submodule of any A-module N, for any irreducible element r € A.
(3) For each i, there exist s; > 1 and a sequence

1<y <<y,
and an isomorphism

Myors(ri) = M(r;) = € A/ri" A.

1<j<s;

. Which of the following statements are true (justify with a proof, a reference to a
result of the course, or a counterexample):

A. If I and J are ideals in a commutative ring A, then A/(I NJ) is isomorphic to
A/l x AJJ.
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B. Any integral domain A is contained in a field K.
C. Any non-zero commutative ring contains a prime ideal.

D. If A is a commutative ring and I C A is a prime ideal, then A/I is a field.

Solution. (A) False in general: for instance, take I = J = 0 if A is an integral
domain (then A is not isomorphic to A x A).

(B) True: one can take K to be the field of fractions of A.

(C) True: in fact, such a ring contains a maximal ideal, and a maximal ideal is
also a prime ideal.

(D) False: A/I is an integral domain, but not necessarily a field; for instance, take
A=C[X,Y] and I = XA; then A/I ~ C[Y] is an integral domain, so [ is a prime
ideal, but not a field.

. Let K be a field and n > 2 an integer. Let I,, denote the principal ideal generated
by X™ in K[X], and let A, = K[X]/I,. Compute the group AX of units in A,
Prove that A, has a unique maximal ideal; which ideal is it?

Solution. Let x € A, be the image of X. It is easy to see that any y € A,, can
be written uniquely

Ap=ag+arx+--+a, 12" !

where the a; are in K. We have then
AfX={ye A, | y=ao+arz+ - +ap,_12"" " with ap # 0}.

Indeed, note that in writing y as above, we have ay = P(0), where P € K[X] is
any polynomial with image y. So if y is a unit, with yz = 1 for some z € A,,
we get 1 = P(0)Q(0) = apQ(0), where @ has image z. This means that ag is
non-zero, and this gives the inclusion of the units of A, in the right-hand side.
Conversely, if ag # 0, then we look for an inverse of y in the form

z = aal +bx 4+ by

The equations expressing the relation yz = 1 are linear equations for the coeffi-
cients b1, ..., bp_1, and one sees that they form a triangular system with non-zero
diagonal coefficients. Hence there is a solution.

The unique maximal ideal of A, is the principal ideal I generated by z. Indeed,
we see that A, /I is isomorphic to K by mapping y to ag, so that I is a maximal
ideal.

Furthermore, if J is any proper ideal, it is contained in I, so that I is the unique
maximal ideal: otherwise, there would exist some element y in J with ag # 0

(since ap = 0 implies that y is a multiple of x), and then y € A, would show that
J = A,.
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3. (Fields)

1. (Result from the course) Prove that given a field K and a non-constant polynomial
P € KI[X], there exists an extension L/K and an element x € L such that
P(z) = 0.

Solution. Let Q € K[X] be an irreducible factor of P, which exists since it is
not constant. We will find an extension L/K where @ has a root, and such a root
will be by construction a root of P as well. We write

d
Q = Z aiXi
i=0

for some a; € K.

Consider L = K[X] /QK[X] and ¥ €~1:J the image of X under the projection
7w ¢ K[X]— L. Then L is a field, and Q(Z) = 0, where

Q=> m(a)X".

i

Moreover, there is an homomorphism K — L by composing the injection of K in
K[X] and the projection. Since both rings are fields, this is an injective homo-
morphism, which we denote ¢.
The only issue is that L is not literally an extension of K. One goes around this
by defining L as the disjoint union of K and the complement in L of the image
of the injective homomorphism K — L. There is a bijection f : L — L by
mapping t(y) € L toy € K C L for any y € K, and mapping y € L — 1(K) to
y € L. One then defines a field structure on L so that f is an isomorphism of
fields, by “transport of structure”. The image of Z in L under f is then a root of
Q in L.

2. Which of the following statements are true (justify with a proof, a reference to a
result of the course, or a counterexample):

A. If L/K is a finite extension and L contains some element z for which the
minimal polynomial Irr(x; K) of x is separable, then L/K is separable.

B. If K is a finite field, then its order is a prime number.

C. If K is a field and L;, Lo are algebraically closed fields containing K, then L;
is isomorphic to Lo.

Solution. (A) False, this condition should be true at least for elements x gener-

ating L over K.

(B) False, the order is a power of a prime number.

(C) False (fields which are algebraically closed and algebraic over K) are iso-
morphic: for instance the fields Q of algebraic numbers and C, which are both
algebraically closed and contain QQ are not isomorphic (one is countable, and the
other not).
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4. (Galois theory)

1. (Result from the course) Given a field K, a separable non-constant polynomial
P € K[X] of degree d > 1 and a splitting field L/K of P, explain the construction
of an injective homomorphism Gal(L/K) — Sy.

Solution. Let Z C L be the set of roots of P in L. By definition of a splitting
field and of the Galois group G = Gal(L/K), we have an action of G on Z by
o -z = 0(z). This gives a homomorphism

f:G =Sy

This is injective because if f(o) = 1, then o(z) = z for all z € Z, and since Z
generates L over K by definition, this implies that o is the identity.

Now fix an enumeration of the roots Z = {z1,...,24}, where d = deg(P). This
gives an isomorphism Sz — Sy, and by composing, an injective homomorphism
G — Sd

2. (Result from the course) State and sketch the proof of the classification of Kummer
extensions for cyclic extensions of degree d over a field K containing the d-th roots
of unity.

Solution. For K of characteristic coprime to d containing g, a finite extension
L/K is Galois with Galois group isomorphic to Z/dZ if and only if there exists
y € L such that L = K(y) and 3¢ € K*, and if moreover 3¢ ¢ K for any divisor
e<dofd!

Step 1 (“If”). Let z = y® € K*. All the roots of the equation X¢ = z are of the
form = &y with £ € pg C K, so L/K is normal. The assumption also shows
that L/K is also separable. Then the map

)

Yy
is an injective homomorphism of its Galois group to ug ~ Z/dZ. 1t is surjective
because otherwise the image would be a subgroup aZ/dZ where a divides d and
a > 1. But then 3% would be in K by Galois-invariance.
Step 2 (“Only if”). Let L/K be cyclic of degree d. Let £ be a generator of pg and
o a generator of the Galois group of L/K. For some ¢t € K, the expression

y=t+& o)+ + & @Dy

is non-zero and satisfies o(y) = &y. From this it follows that L = K(y) and
y¢ € K>, and moreover that y¢ ¢ K for e | d and e < d (because y¢ is not
Galois-invariant: o(y¢) = £°y°, and £° # 1 since £ generates fig).

3. Which of the following statements are true (justify with a proof, a reference to a
result of the course, or a counterexample):

A. If L/K is a finite extension of finite fields, then L/K is a Galois extension.

!This last part was not in the course but it useful to get “if and only if”.
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B. For any field K of characteristic 0, any n > 2, and L = K(y) where y" = 2,
the extension L/K is a Galois extension.

C. Any radical extension has a solvable Galois group.

Solution. (A) True: result from the course.
(B) False: it may not be normal if n > 3, for instance K = Q, n = 3.
(C) False: a radical extension might not be a Galois extension.

. Let L/K be a finite Galois extension with Galois group G. Let G’ denote the
commutator subgroup [G, G] generated by all commutators xyz~!y~! in G. Show
that LY /K is a Galois extension with Gal(LS"/K) abelian. Show that any Galois
extension F/K with E C L and Gal(E/K) abelian is contained in L&'

Solution. We know that G’ is a normal subgroup of G because

1 1

2z, ]zt = [za2t, 2y2 7Y,

so by Galois theory, the extension LY /K is indeed a Galois extension. Its Galois
group is G/G’, which is abelian.

If L/E/K is such that E/K is Galois with abelian Galois group, then the subgroup
H = Gal(L/FE) is normal with G/H abelian. It follows that H D G’ (because any
commutator maps to 1 in G/H), and therefore by the Galois correspondance that
Ec LY.

. Let K be a field of characteristic zero, and let K be an algebraic closure of K.
Let x and y be elements of K such that K (x) and K(y) are solvable extensions.
Prove that K(z + y) is also solvable.

Solution. We have K (z+vy) C K(x,y) = K(x)(y). Let L; (resp. L2) be a radical
extension of K acontaining K (z) (resp. K(y)). Then K(x)(y) C Li(y) C LiLs,
where LjLs is the extension generated by L; U Ly in K. But writing Ly first,
and then Lo, as obtained by adjoining successive roots of radical equations, we see
that LiLs is also a radical extension. Hence K (z + y) is solvable.



