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Test exam solutions

1. (Groups)

1. (Result from the course) Prove that if H is a normal subgroup of a group G,
there is a group structure on the set G/H of right H-cosets of G such that the
projection map π : G→ G/H is a homomorphism. Prove that a homomorphism
ϕ : G → G1, where G1 is another arbitrary group, can be expressed in the form
ϕ = ϕ̃ ◦ π for some homomorphism ϕ̃ : G/H → G1 if and only if ker(ϕ) ⊃ H.

Solution. We define a group structure onG/H as follows: (1) the identity element
is 1G/H = H, the H-coset of the identity element in G; (2) the inverse of a coset
xH is x−1H; (3) the product of two cosets xH and yH is xyH.

Before checking that these data define a group structure, we must check that the
inverse and product are well-defined: the cosets x−1H (resp. xyH) should be
independent of the choice of x (resp. x and y) in their respective cosets. For the
product (the inverse being similar), this means that if we replace x by xh1 and y by
yh2, where h1 and h2 are in H, we should have xyH = xh1yh2H. This is indeed
the case, because H is normal in G: we have xh1yh2 = xy · y−1h1yh2 = xyh3
where h3 = yh1y

−1h2 belongs to H, so xh1yh2H = xyh3H = xyH.

Once this is done, it is easy to check all axioms for a group. For instance, asso-
ciativity follows from the definition of the product.

(xH) · ((yH)(zH)) = xyzH = (xHyH) · zH.

For the second part, suppose first that ϕ = ϕ̃ ◦ π. Then for h ∈ H, we obtain
ϕ(h) = ϕ̃(π(h)) = 1 since π(h) = 1 in G/H. Conversely, assume that the kernel of
ϕ contains H. We claim that a map ϕ̃ : G/H −→ G1 is well-defined by ϕ̃(xH) =
ϕ(x). Indeed, if we replace x by xh1, where h1 ∈ H, we obtain ϕ(xh1) = ϕ(x)
since h1 ∈ ker(ϕ). Now we have

ϕ(x) = ϕ̃(xH) = ϕ̃(π(x))

so ϕ = ϕ̃ ◦ π. Moreover, ϕ̃ is a homomorphism: we have

ϕ̃(xHyH) = ϕ̃(xyH) = ϕ(xy) = ϕ(x)ϕ(y) = ϕ̃(xH)ϕ̃(yH).

2. Which of the following statements are true (justify with a proof, a reference to a
result of the course, or a counterexample):

A. Every finite abelian group is isomorphic to a direct product of cyclic groups.

B. Every subgroup of an abelian group is solvable.
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C. If a group G acts on a set X, then the stabilizer of a point x ∈ X is a normal
subgroup of G.

Solution. (A) True, by the structure theorem of finitely generated abelian groups.

(B) True, since a subgroup of an abelian group is abelian, and an abelian groups
is solvable.

(C) False in general; for instance, if n ≥ 3, and Sn acts on {1, . . . , n} by σ·n = σ(n),
then the stabilizer H of 1 is not normal: its conjugates are the stabilizers of other
elements, and these are not equal (because n ≥ 3).

3. Let G be a group, H a subgroup of G and ξ ∈ G an element such that ξHξ = H.
Prove that ξ2 ∈ H and that ξHξ−1 = H (which means that ξ belongs to the
normalizer of H in G). Conversely, prove that if η ∈ G is some element such that
η2 ∈ H and η ∈ NG(H), then ηHη = H.

Solution. From ξHξ = H, taking the element 1 in H, we get ξ2 ∈ H. Now we
write

ξHξ−1 = ξHξξ−2 = Hξ−2 = H,

since ξ−2 also belongs to H.

Conversely, we have
ηHη = ηHη2η−1 = ηHη−1 = H

if η2 ∈ H and η normalizes H.

2. (Rings)

1. (Result from the course) Prove that in a principal ideal domain A, every non-zero
element has a unique factorization into irreducible elements.

Solution. Existence: by contradiction, let x ∈ A be a non-zero element without
factorization. Then x is not irreducible, so we can write x = y1y

′
1 with neither y1

nor y′1 being a unit. One of these at least has no factorization, since otherwise x
would have one. We may assume that y1 has no factorization. Then we have

xA ⊂ y1A

and xA 6= y1A, since y′1 is not a unit.

Again y1 is not irreducible so y1 = y2y
′
2 for some non-units y2 and y′2, one of

which at least (say y2) has no factorization. Iterating, we obtain in this manner
an infinite sequence

xA ⊂ y1A ⊂ y2A ⊂ · · ·

where all inclusions are strict. Let I be the union of the principal ideals in this
sequence. Then I is an ideal of A, as one checks using the fact that the union
is increasing. Since A is a principal ideal domain, there exists z ∈ A such that
I = zA. Since z ∈ A, there exists a yj such that z ∈ yjA. But then zA ⊂ yjA ⊂
I = zA, so that z = uyj for some unit u ∈ A×. This then contradicts the fact
that yjA = zA is a proper subset of yj+1A.
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Uniqueness: If there exists elements with two factorizations, let x be one with
factorizations

x = u1p
n1
1 · · · p

nk
k = u2q

m1
1 · · · q

ml
l ,

with irreducible elements pi and qj and ni ≥ 1, mj ≥ 1, chosen so that the sum∑
i

ni +
∑
j

mj

is as small as possible.

Then p1 divides the right-hand side, so (because A is a principal ideal domain)
must divide one of the factors q

mj

j , so p1A must be equal to one of the qjA.
Dividing out by p1, we obtain two factorizations with smaller sum of exponents,
a contradiction.

2. State the structure theorem for finitely-generated modules over a principal ideal
domain.

Solution. Let A be a principal ideal domain, M a finitely generated A-module.

(1) There exists an integer n ≥ 0 and an isomorphism

M
∼−→ An ⊕Mtors

where
Mtors = {m ∈M | am = 0 for some a 6= 0}

is the torsion submodule of M .

(2) There exist m ≥ 0 and irreducible elements r1, . . . , rm, such that the ideals
riA are pairwise coprime, Mtors(ri) 6= 0 and

Mtors =

m⊕
i=1

Mtors(ri)

where we denote

N(r) = {n ∈ N | rkn = 0 for some k ≥ 0}

the r-primary submodule of any A-module N , for any irreducible element r ∈ A.

(3) For each i, there exist si ≥ 1 and a sequence

1 ≤ νi,1 ≤ · · · ≤ νi,si

and an isomorphism

Mtors(ri) = M(ri)
∼−→

⊕
1≤j≤si

A/r
νi,j
i A.

3. Which of the following statements are true (justify with a proof, a reference to a
result of the course, or a counterexample):

A. If I and J are ideals in a commutative ring A, then A/(I ∩ J) is isomorphic to
A/I ×A/J .
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B. Any integral domain A is contained in a field K.

C. Any non-zero commutative ring contains a prime ideal.

D. If A is a commutative ring and I ⊂ A is a prime ideal, then A/I is a field.

Solution. (A) False in general: for instance, take I = J = 0 if A is an integral
domain (then A is not isomorphic to A×A).

(B) True: one can take K to be the field of fractions of A.

(C) True: in fact, such a ring contains a maximal ideal, and a maximal ideal is
also a prime ideal.

(D) False: A/I is an integral domain, but not necessarily a field; for instance, take
A = C[X,Y ] and I = XA; then A/I ' C[Y ] is an integral domain, so I is a prime
ideal, but not a field.

4. Let K be a field and n ≥ 2 an integer. Let In denote the principal ideal generated
by Xn in K[X], and let An = K[X]/In. Compute the group A×n of units in An.
Prove that An has a unique maximal ideal; which ideal is it?

Solution. Let x ∈ An be the image of X. It is easy to see that any y ∈ An can
be written uniquely

An = a0 + a1x+ · · ·+ an−1x
n−1

where the ai are in K. We have then

A×n = {y ∈ An | y = a0 + a1x+ · · ·+ an−1x
n−1 with a0 6= 0}.

Indeed, note that in writing y as above, we have a0 = P (0), where P ∈ K[X] is
any polynomial with image y. So if y is a unit, with yz = 1 for some z ∈ An,
we get 1 = P (0)Q(0) = a0Q(0), where Q has image z. This means that a0 is
non-zero, and this gives the inclusion of the units of An in the right-hand side.

Conversely, if a0 6= 0, then we look for an inverse of y in the form

z = a−10 + b1x+ · · ·+ bn−1x
n−1.

The equations expressing the relation yz = 1 are linear equations for the coeffi-
cients b1, . . . , bn−1, and one sees that they form a triangular system with non-zero
diagonal coefficients. Hence there is a solution.

The unique maximal ideal of An is the principal ideal I generated by x. Indeed,
we see that An/I is isomorphic to K by mapping y to a0, so that I is a maximal
ideal.

Furthermore, if J is any proper ideal, it is contained in I, so that I is the unique
maximal ideal: otherwise, there would exist some element y in J with a0 6= 0
(since a0 = 0 implies that y is a multiple of x), and then y ∈ A×n would show that
J = An.
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3. (Fields)

1. (Result from the course) Prove that given a field K and a non-constant polynomial
P ∈ K[X], there exists an extension L/K and an element x ∈ L such that
P (x) = 0.

Solution. Let Q ∈ K[X] be an irreducible factor of P , which exists since it is
not constant. We will find an extension L/K where Q has a root, and such a root
will be by construction a root of P as well. We write

Q =
d∑
i=0

aiX
i

for some ai ∈ K.

Consider L̃ = K[X]/QK[X] and x̃ ∈ L̃ the image of X under the projection
π : K[X]→ L. Then L̃ is a field, and Q̃(x̃) = 0, where

Q̃ =
∑
i

π(ai)X
i.

Moreover, there is an homomorphism K → L̃ by composing the injection of K in
K[X] and the projection. Since both rings are fields, this is an injective homo-
morphism, which we denote ι.

The only issue is that L̃ is not literally an extension of K. One goes around this
by defining L as the disjoint union of K and the complement in L̃ of the image
of the injective homomorphism K −→ L̃. There is a bijection f : L̃ → L by
mapping ι(y) ∈ L̃ to y ∈ K ⊂ L for any y ∈ K, and mapping y ∈ L̃ − ι(K) to
y ∈ L. One then defines a field structure on L so that f is an isomorphism of
fields, by “transport of structure”. The image of x̃ in L under f is then a root of
Q in L.

2. Which of the following statements are true (justify with a proof, a reference to a
result of the course, or a counterexample):

A. If L/K is a finite extension and L contains some element x for which the
minimal polynomial Irr(x;K) of x is separable, then L/K is separable.

B. If K is a finite field, then its order is a prime number.

C. If K is a field and L1, L2 are algebraically closed fields containing K, then L1

is isomorphic to L2.

Solution. (A) False, this condition should be true at least for elements x gener-
ating L over K.

(B) False, the order is a power of a prime number.

(C) False (fields which are algebraically closed and algebraic over K) are iso-
morphic: for instance the fields Q̄ of algebraic numbers and C, which are both
algebraically closed and contain Q are not isomorphic (one is countable, and the
other not).
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4. (Galois theory)

1. (Result from the course) Given a field K, a separable non-constant polynomial
P ∈ K[X] of degree d ≥ 1 and a splitting field L/K of P , explain the construction
of an injective homomorphism Gal(L/K)→ Sd.

Solution. Let Z ⊂ L be the set of roots of P in L. By definition of a splitting
field and of the Galois group G = Gal(L/K), we have an action of G on Z by
σ · z = σ(z). This gives a homomorphism

f : G→ SZ .

This is injective because if f(σ) = 1, then σ(z) = z for all z ∈ Z, and since Z
generates L over K by definition, this implies that σ is the identity.

Now fix an enumeration of the roots Z = {z1, . . . , zd}, where d = deg(P ). This
gives an isomorphism SZ → Sd, and by composing, an injective homomorphism
G→ Sd

2. (Result from the course) State and sketch the proof of the classification of Kummer
extensions for cyclic extensions of degree d over a field K containing the d-th roots
of unity.

Solution. For K of characteristic coprime to d containing µd, a finite extension
L/K is Galois with Galois group isomorphic to Z/dZ if and only if there exists
y ∈ L such that L = K(y) and yd ∈ K×, and if moreover ye /∈ K for any divisor
e < d of d.1

Step 1 (“If”). Let z = yd ∈ K×. All the roots of the equation Xd = z are of the
form x = ξy with ξ ∈ µd ⊂ K, so L/K is normal. The assumption also shows
that L/K is also separable. Then the map

σ 7→ σ(y)

y

is an injective homomorphism of its Galois group to µd ' Z/dZ. It is surjective
because otherwise the image would be a subgroup aZ/dZ where a divides d and
a > 1. But then yd/a would be in K by Galois-invariance.

Step 2 (“Only if”). Let L/K be cyclic of degree d. Let ξ be a generator of µd and
σ a generator of the Galois group of L/K. For some t ∈ K, the expression

y = t+ ξ−1σ(t) + · · ·+ ξ−(d−1)σd−1(t)

is non-zero and satisfies σ(y) = ξy. From this it follows that L = K(y) and
yd ∈ K×, and moreover that ye /∈ K for e | d and e < d (because ye is not
Galois-invariant: σ(ye) = ξeye, and ξe 6= 1 since ξ generates µd).

3. Which of the following statements are true (justify with a proof, a reference to a
result of the course, or a counterexample):

A. If L/K is a finite extension of finite fields, then L/K is a Galois extension.

1This last part was not in the course but it useful to get “if and only if”.
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B. For any field K of characteristic 0, any n ≥ 2, and L = K(y) where yn = 2,
the extension L/K is a Galois extension.

C. Any radical extension has a solvable Galois group.

Solution. (A) True: result from the course.

(B) False: it may not be normal if n ≥ 3, for instance K = Q, n = 3.

(C) False: a radical extension might not be a Galois extension.

4. Let L/K be a finite Galois extension with Galois group G. Let G′ denote the
commutator subgroup [G,G] generated by all commutators xyx−1y−1 in G. Show
that LG

′
/K is a Galois extension with Gal(LG

′
/K) abelian. Show that any Galois

extension E/K with E ⊂ L and Gal(E/K) abelian is contained in LG
′
.

Solution. We know that G′ is a normal subgroup of G because

z[x, y]z−1 = [zxz−1, zyz−1],

so by Galois theory, the extension LG
′
/K is indeed a Galois extension. Its Galois

group is G/G′, which is abelian.

If L/E/K is such that E/K is Galois with abelian Galois group, then the subgroup
H = Gal(L/E) is normal with G/H abelian. It follows that H ⊃ G′ (because any
commutator maps to 1 in G/H), and therefore by the Galois correspondance that
E ⊂ LG′

.

5. Let K be a field of characteristic zero, and let K̄ be an algebraic closure of K.
Let x and y be elements of K̄ such that K(x) and K(y) are solvable extensions.
Prove that K(x+ y) is also solvable.

Solution. We have K(x+y) ⊂ K(x, y) = K(x)(y). Let L1 (resp. L2) be a radical
extension of K acontaining K(x) (resp. K(y)). Then K(x)(y) ⊂ L1(y) ⊂ L1L2,
where L1L2 is the extension generated by L1 ∪ L2 in K̄. But writing L1 first,
and then L2, as obtained by adjoining successive roots of radical equations, we see
that L1L2 is also a radical extension. Hence K(x+ y) is solvable.


