Exercise sheet 1

1. Let K be a field. For each of the following statements, indicate whether it is true (with a proof) or false (by giving and explaining a counterexample):
2. Every algebraic extension L of K is a finite extension.
3. The field \mathbb{C} is an algebraic closure of \mathbb{Q}.
4. Let L / K be a finite extension and $x \in L$; if P is the minimal polynomial of x, then we have $[L: K]=\operatorname{deg}(P)$.
5. The separable degree of the extension $\mathbb{Q}(\sqrt[4]{2}) / \mathbb{Q}$ is 4 .
6. There exists a finite field of order 243.
7. The extension $\mathbb{Q}(\exp (2 i \pi / 123)) / \mathbb{Q}$ is algebraic.
8. If K_{2} / K_{1} and K_{1} / K are algebraic extensions, then K_{2} / K is algebraic.
9. Let $L=\mathbb{Q}(\sqrt{2}, \exp (2 i \pi / 127), \sqrt{3+\sqrt[4]{12}})$; there exists $x \in \mathbb{C}$ such that $L=\mathbb{Q}(x)$.
10. Let L / K be a separable field extension and $n \geq 1$ an integer such that $[K(x)$: $K] \leq n$ for all $x \in L$; then $[L: K] \leq n$.
11. Let $x=\sqrt{2}+\sqrt[3]{3}$.
12. Prove that $\mathbb{Q}(x)=\mathbb{Q}(\sqrt{2}, \sqrt[3]{3})$. [Hint: Find the minimal polynomial of $x-\sqrt{2}$ and expand]
13. Compute the minimal polynomial of x over $\mathbb{Q}(\sqrt{2})$. $[$ Hint: $[\mathbb{Q}(x): \mathbb{Q}(\sqrt{2})]=$?]
14. Compute the minimal polynomial of x over \mathbb{Q}.
15. Let p be a prime number and K a field of characteristic p. Let $\phi: K \rightarrow K$ be the Frobenius morphism given by $\phi(x)=x^{p}$.
16. Give an example of field K where ϕ is surjective, and an example where it is not.

We assume that ϕ is surjective.
2. Let $P \in K[X]$ be a polynomial such that $P^{\prime}=0$. Prove that there exists $Q \in K[X]$ such that $P=Q^{p}$.
3. Deduce that any irreducible polynomial $P \in K[X]$ is separable.
4. Deduce that any algebraic extension L / K is separable.
4. Find an element $x \in K=\mathbb{Q}(\sqrt{2}, \sqrt{3})$ such that $K=\mathbb{Q}(x)$.
5. Let K be a field and let E_{1} and E_{2} be two algebraically closed extensions of K. Let \bar{K}_{1} and \bar{K}_{2} denote the algebraic closure of K in E_{1} and E_{2} respectively.

Let L be an algebraic extension of K.

1. Show that for any field homomorphism $\sigma: L \rightarrow E_{1}$ such that $\left.\sigma\right|_{K}=\operatorname{Id}_{K}$, the image $\sigma(L)$ is contained in \bar{K}_{1}.
2. Show that the number of field homomorphisms $\sigma: L \rightarrow E_{1}$ such that $\left.\sigma\right|_{K}=\operatorname{Id}_{K}$ is equal to the number of field homomorphisms $\sigma: L \rightarrow E_{2}$ such that $\left.\sigma\right|_{K}=\operatorname{Id}_{K}$.
