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Solutions of exercise sheet 10

1. Let d ≥ 2 be an integer, and H ≤ Sd be a subgroup generated by a set of transpositions,
such that H acts transitively on {1, . . . , d}. Prove that H = Sd. [Hint: It is enough to
show that H contains, for some fixed i, all permutations (i k) with k 6= i. Start with a
permutation (i j) ∈ H, and for k arbitrary construct a “path” of transpositions from
j to k. Then...]

Solution: Suppose that H contains all the permutations of the kind (i k) for fixed i.
Then for each k′, k′′ we have H 3 (i k′)(i k′′)(i k′) = (k′ k′′), so that H contains all
transpositions and hence H = Sd.

By hypothesis there is a transposition τ = (i j) ∈ H (since H is non-trivial as it is
non-transitive). Suppose that k differs from both i and j. Then by transitivity of
H there exists transpositions τ0, . . . , τl such that the composite τ0 · · · τl sends j to k.
Without loss of generality we may assume that τl does not fix j (else, we can remove
and use induction on l). Moreover, without loss of generality we may assume that two
τs 6= τs+1 for each s (else, we can remove them both, and again use induction on l).
Furthermore, we can also assume that τs switches the image of j via τs+1 · · · τl (else,
we can take s maximal such that τs and τs+1 are disjoint and notice that the image
of j through σs+1 · · ·σl is fixed by τs, which can then be removed), and prove with
an easy induction that this allows to write τl = (is is+1) where i0 := k, il+1 := j and
i1, . . . , il are some other elements. Then k = ((k i1)(i1 i2) · · · (il j))(j) where all the
transposition lie in H. We can also assume, without loss of generality, that the is are
all different for s = 0, . . . , l+ 1 (else, if is = is′ , then one can remove the transpositions
τs, . . . , τs′−1 and use induction).

Now we have k = (k i1 i2 · · · il j)(j) for distinct is. There are now two cases:

• Suppose that i 6= is for each s. Let γ = (k i1 i2 · · · il j). Then

H 3 γ−1(i j)γ−1 = (i k)

• Suppose that i = is for some s. We have σ := (k i1 i2 · · · is−1 i) ∈ H, so that

H 3 τ(στσ−1)τ−1 = τ(j k)τ−1 = (i k)

In both cases, we have proved that (i k) ∈ H, so that our initial considerations allow
us to conclude.

2. Let K be a field, and let L1/K, L2/K be two finite extensions lying in a fixed algebraic
closure K̄ of K.

Please turn over!



1. Let L1L2 ⊆ K̄ be the smallest extension of K containing L1 and L2. Show that
L1L2 is a finite extension of K.

2. Assume that L1 and L2 are normal extensions of K. Show that L1L2 is also a
normal extension of K.

3. Assume that L1 and L2 are separable extensions of K. Show that L1L2 is also a
separable extension of K.

4. Now assume that L1 and L2 are Galois extensions of K with Galois groups Gi :=
Gal(Li/K). Show that restriction of automorphisms induces an injective group
homomorphism

ϕ : Gal(L1L2/K) −→ G1 ×G2.

5. Assume that L1 ∩ L2 = K. Show that ϕ is surjective.

6. Construct a field extension L/Q with Gal(L/Q) = Z/2Z× Z/2Z× Z/2Z.

Solution:

1. Since L1L2 ⊆ K̄, the extension L1L2/K is algebraic, and we are only left to
prove that it is finitely generated. By hypothesis both the extensions Li/K are
finitely generated. Adjoining to K some chosen generators of L1/K together with
some chosen generators of L2/K we get a finitely generated extension of K which
contains both L1 and L2, and has then to coincide with L1L2 by definition. Hence
L1L2 is finitely generated over K.

2. Let σ : L1L2 −→ K̄ be a K-embedding, and let us prove that σ(L1L2) = L1L2 to
conclude normality of L1L2/K. This is quite straightforward: σ(L1L2) contains
σ(Li) for both i, which is Li by hypothesis. Then σ(L1L2) ⊇ L1L2 by hypothesis,
and equality is immediate by equality of the dimensions of the two sides as K-
vector space (and injectivity of σ).

3. Write L1 = K(α1, . . . , αt). All the αi’s are separable over K. Then L1L2 =
L2(α1, . . . , αt), and all the αi’s are separable over L2 (because their minimal poly-
nomials L2 are factors of their minimal polynomials over K), so that L1L2/L2 is
separable. Since separability is preserved in towers of extensions, L1L2/K is a
separable extension.

4. Clearly L1L2/K is Galois by the two previous points. Define

ϕ : Gal(L1L2/K) −→ G1 ×G2

σ 7→ (σ|L1 , σ|L2).

This is clearly a group homomorphism. Suppose σ ∈ ker(ϕ). Then σ|Li = idLi

for i = 1, 2. Then applying σ to generators of the extensions Li/K, the procedure
used in Point 1 to construct L1L2 proves that σ = idL1L2 , so that ϕ is injective.

5. Let H1 = Gal(L1L2/L2) and H2 = Gal(L1L2/L1). They are subgroups of φ.
Moreover, φ(H1) = K1 × 1 and φ(H2) = 1×K2 for some subgroups Ki of Gi, so
that we can identify Hi ≤ Gi for i = 1, 2. To conclude, we just need to show that
H1×H2 = Gal(L1L2/K), which is quite straightforward by Galois correspondence.
Indeed, LH1×H2 ⊆ LHi = Li, so that LH1×H2 ⊆ L1 ∩ L2 = K.

See next page!



3. [Gauss sums] Let p be an odd prime and define the Legendre symbol as follows for
x ∈ F×p : (

x

p

)
=

{
1 if x is a square in F×p
−1 if x is a not square in F×p

Recall that the association x 7→
(
a
p

)
defines a group homomorphism F×p −→ {±1}.

(See last semester’s - Algebra I, HS 2014 - Exercise sheet 13, Exercise 2).

Let

τ :=
∑
a∈F×p

(
a

p

)
exp

(
2πia

p

)
.

Prove directly by Galois theory that τ2 ∈ Q×, but τ 6∈ Q×.

[Hint: Compute the action of the Galois group of Q(ξp)/Q, where ξp = exp
(
2πi
p

)
.

Recall that [Q(ξp) : Q] = p− 1.]

Solution:

By definition, τ ∈ Q(ξp), and we know that Gal(Q(ξp)/Q) ∼= (Z/pZ)×, where the class
b+ pZ, with p - b, acts via ξp 7→ ξbp. Hence, we have

(b+ pZ) · τ = (b+ pZ) ·
∑
a∈F×p

(
a

p

)
exp

(
2πia

p

)
=
∑
a∈F×p

(
a

p

)
exp

(
2πiab

p

)

=

(
b

p

) ∑
a∈F×p

(
ab

p

)
exp

(
2πiab

p

)
=

(
b

p

)
τ.

Then it’s clear that τ2 is fixed by all automorphisms of Q(ξp)/Q, while τ is not (as
F×p contains non-squares). By Galois theory, this means that τ 6∈ Q× and τ2 6∈ Q×.


