Solutions of exercise sheet 10

1. Let $d \geq 2$ be an integer, and $H \leq S_{d}$ be a subgroup generated by a set of transpositions, such that H acts transitively on $\{1, \ldots, d\}$. Prove that $H=S_{d}$. [Hint: It is enough to show that H contains, for some fixed i, all permutations $(i k)$ with $k \neq i$. Start with a permutation $(i j) \in H$, and for k arbitrary construct a "path" of transpositions from j to k. Then...]

Solution: Suppose that H contains all the permutations of the kind $(i k)$ for fixed i. Then for each $k^{\prime}, k^{\prime \prime}$ we have $H \ni\left(i k^{\prime}\right)\left(i k^{\prime \prime}\right)\left(i k^{\prime}\right)=\left(k^{\prime} k^{\prime \prime}\right)$, so that H contains all transpositions and hence $H=S_{d}$.

By hypothesis there is a transposition $\tau=(i j) \in H$ (since H is non-trivial as it is non-transitive). Suppose that k differs from both i and j. Then by transitivity of H there exists transpositions $\tau_{0}, \ldots, \tau_{l}$ such that the composite $\tau_{0} \cdots \tau_{l}$ sends j to k. Without loss of generality we may assume that τ_{l} does not fix j (else, we can remove and use induction on l). Moreover, without loss of generality we may assume that two $\tau_{s} \neq \tau_{s+1}$ for each s (else, we can remove them both, and again use induction on l). Furthermore, we can also assume that τ_{s} switches the image of j via $\tau_{s+1} \cdots \tau_{l}$ (else, we can take s maximal such that τ_{s} and τ_{s+1} are disjoint and notice that the image of j through $\sigma_{s+1} \cdots \sigma_{l}$ is fixed by τ_{s}, which can then be removed), and prove with an easy induction that this allows to write $\tau_{l}=\left(i_{s} i_{s+1}\right)$ where $i_{0}:=k, i_{l+1}:=j$ and i_{1}, \ldots, i_{l} are some other elements. Then $k=\left(\left(k i_{1}\right)\left(i_{1} i_{2}\right) \cdots\left(i_{l} j\right)\right)(j)$ where all the transposition lie in H. We can also assume, without loss of generality, that the i_{s} are all different for $s=0, \ldots, l+1$ (else, if $i_{s}=i_{s^{\prime}}$, then one can remove the transpositions $\tau_{s}, \ldots, \tau_{s^{\prime}-1}$ and use induction).

Now we have $k=\left(k i_{1} i_{2} \cdots i_{l} j\right)(j)$ for distinct i_{s}. There are now two cases:

- Suppose that $i \neq i_{s}$ for each s. Let $\gamma=\left(k i_{1} i_{2} \cdots i_{l} j\right)$. Then

$$
H \ni \gamma^{-1}(i j) \gamma^{-1}=(i k)
$$

- Suppose that $i=i_{s}$ for some s. We have $\sigma:=\left(k i_{1} i_{2} \cdots i_{s-1} i\right) \in H$, so that

$$
H \ni \tau\left(\sigma \tau \sigma^{-1}\right) \tau^{-1}=\tau(j k) \tau^{-1}=(i k)
$$

In both cases, we have proved that $(i k) \in H$, so that our initial considerations allow us to conclude.
2. Let K be a field, and let $L_{1} / K, L_{2} / K$ be two finite extensions lying in a fixed algebraic closure \bar{K} of K.

1. Let $L_{1} L_{2} \subseteq \bar{K}$ be the smallest extension of K containing L_{1} and L_{2}. Show that $L_{1} L_{2}$ is a finite extension of K.
2. Assume that L_{1} and L_{2} are normal extensions of K. Show that $L_{1} L_{2}$ is also a normal extension of K.
3. Assume that L_{1} and L_{2} are separable extensions of K. Show that $L_{1} L_{2}$ is also a separable extension of K.
4. Now assume that L_{1} and L_{2} are Galois extensions of K with Galois groups $G_{i}:=$ $\operatorname{Gal}\left(L_{i} / K\right)$. Show that restriction of automorphisms induces an injective group homomorphism

$$
\varphi: \operatorname{Gal}\left(L_{1} L_{2} / K\right) \longrightarrow G_{1} \times G_{2} .
$$

5. Assume that $L_{1} \cap L_{2}=K$. Show that φ is surjective.
6. Construct a field extension L / \mathbb{Q} with $\operatorname{Gal}(L / \mathbb{Q})=\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$.

Solution:

1. Since $L_{1} L_{2} \subseteq \bar{K}$, the extension $L_{1} L_{2} / K$ is algebraic, and we are only left to prove that it is finitely generated. By hypothesis both the extensions L_{i} / K are finitely generated. Adjoining to K some chosen generators of L_{1} / K together with some chosen generators of L_{2} / K we get a finitely generated extension of K which contains both L_{1} and L_{2}, and has then to coincide with $L_{1} L_{2}$ by definition. Hence $L_{1} L_{2}$ is finitely generated over K.
2. Let $\sigma: L_{1} L_{2} \longrightarrow \bar{K}$ be a K-embedding, and let us prove that $\sigma\left(L_{1} L_{2}\right)=L_{1} L_{2}$ to conclude normality of $L_{1} L_{2} / K$. This is quite straightforward: $\sigma\left(L_{1} L_{2}\right)$ contains $\sigma\left(L_{i}\right)$ for both i, which is L_{i} by hypothesis. Then $\sigma\left(L_{1} L_{2}\right) \supseteq L_{1} L_{2}$ by hypothesis, and equality is immediate by equality of the dimensions of the two sides as K vector space (and injectivity of σ).
3. Write $L_{1}=K\left(\alpha_{1}, \ldots, \alpha_{t}\right)$. All the α_{i} 's are separable over K. Then $L_{1} L_{2}=$ $L_{2}\left(\alpha_{1}, \ldots, \alpha_{t}\right)$, and all the α_{i} 's are separable over L_{2} (because their minimal polynomials L_{2} are factors of their minimal polynomials over K), so that $L_{1} L_{2} / L_{2}$ is separable. Since separability is preserved in towers of extensions, $L_{1} L_{2} / K$ is a separable extension.
4. Clearly $L_{1} L_{2} / K$ is Galois by the two previous points. Define

$$
\begin{aligned}
\varphi: \operatorname{Gal}\left(L_{1} L_{2} / K\right) & \longrightarrow G_{1} \times G_{2} \\
\sigma & \mapsto\left(\left.\sigma\right|_{L_{1}},\left.\sigma\right|_{L_{2}}\right) .
\end{aligned}
$$

This is clearly a group homomorphism. Suppose $\sigma \in \operatorname{ker}(\varphi)$. Then $\left.\sigma\right|_{L_{i}}=\mathrm{id}_{L_{i}}$ for $i=1,2$. Then applying σ to generators of the extensions L_{i} / K, the procedure used in Point 1 to construct $L_{1} L_{2}$ proves that $\sigma=\operatorname{id}_{L_{1} L_{2}}$, so that φ is injective.
5. Let $H_{1}=\operatorname{Gal}\left(L_{1} L_{2} / L_{2}\right)$ and $H_{2}=\operatorname{Gal}\left(L_{1} L_{2} / L_{1}\right)$. They are subgroups of ϕ. Moreover, $\phi\left(H_{1}\right)=K_{1} \times 1$ and $\phi\left(H_{2}\right)=1 \times K_{2}$ for some subgroups K_{i} of G_{i}, so that we can identify $H_{i} \leq G_{i}$ for $i=1,2$. To conclude, we just need to show that $H_{1} \times H_{2}=\operatorname{Gal}\left(L_{1} L_{2} / K\right)$, which is quite straightforward by Galois correspondence. Indeed, $L^{H_{1} \times H_{2}} \subseteq L^{H_{i}}=L_{i}$, so that $L^{H_{1} \times H_{2}} \subseteq L_{1} \cap L_{2}=K$.
3. [Gauss sums] Let p be an odd prime and define the Legendre symbol as follows for $x \in \mathbb{F}_{p}^{\times}$:

$$
\left(\frac{x}{p}\right)=\left\{\begin{array}{l}
1 \text { if } x \text { is a square in } \mathbb{F}_{p}^{\times} \\
-1 \text { if } x \text { is a not square in } \mathbb{F}_{p}^{\times}
\end{array}\right.
$$

Recall that the association $x \mapsto\left(\frac{a}{p}\right)$ defines a group homomorphism $\mathbb{F}_{p}^{\times} \longrightarrow\{ \pm 1\}$. (See last semester's - Algebra I, HS 2014 - Exercise sheet 13, Exercise 2).

Let

$$
\tau:=\sum_{a \in \mathbb{F}_{p}^{\times}}\left(\frac{a}{p}\right) \exp \left(\frac{2 \pi i a}{p}\right) .
$$

Prove directly by Galois theory that $\tau^{2} \in \mathbb{Q}^{\times}$, but $\tau \notin \mathbb{Q}^{\times}$.
[Hint: Compute the action of the Galois group of $\mathbb{Q}\left(\xi_{p}\right) / \mathbb{Q}$, where $\xi_{p}=\exp \left(\frac{2 \pi i}{p}\right)$. Recall that $\left.\left[\mathbb{Q}\left(\xi_{p}\right): \mathbb{Q}\right]=p-1.\right]$

Solution:

By definition, $\tau \in \mathbb{Q}\left(\xi_{p}\right)$, and we know that $\operatorname{Gal}\left(\mathbb{Q}\left(\xi_{p}\right) / \mathbb{Q}\right) \cong(\mathbb{Z} / p \mathbb{Z})^{\times}$, where the class $b+p \mathbb{Z}$, with $p \nmid b$, acts via $\xi_{p} \mapsto \xi_{p}^{b}$. Hence, we have

$$
\begin{aligned}
(b+p \mathbb{Z}) \cdot \tau & =(b+p \mathbb{Z}) \cdot \sum_{a \in \mathbb{F}_{p}^{\times}}\left(\frac{a}{p}\right) \exp \left(\frac{2 \pi i a}{p}\right)=\sum_{a \in \mathbb{F}_{p}^{\times}}\left(\frac{a}{p}\right) \exp \left(\frac{2 \pi i a b}{p}\right) \\
& =\left(\frac{b}{p}\right) \sum_{a \in \mathbb{F}_{p}^{\times}}\left(\frac{a b}{p}\right) \exp \left(\frac{2 \pi i a b}{p}\right)=\left(\frac{b}{p}\right) \tau .
\end{aligned}
$$

Then it's clear that τ^{2} is fixed by all automorphisms of $\mathbb{Q}\left(\xi_{p}\right) / \mathbb{Q}$, while τ is not (as \mathbb{F}_{p}^{\times}contains non-squares). By Galois theory, this means that $\tau \notin \mathbb{Q}^{\times}$and $\tau^{2} \notin \mathbb{Q}^{\times}$.

