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1. Let
% : G→ GL(V )

be a K-representation of a group G. Let E = End(V ) be the vector space of linear
maps from V to V .

1. Show that defining
τ(g)A = gAg−1

defines a representation τ of G on E.

2. Show that EG, the space of fixed points of E for this representation, is equal to
HomG(V, V ).

Solution:

1. We need to check that the given formula defines a group homomorphism τ :
G → GL(E). This accounts to checking that τ(g) : A 7→ gAg−1 is a K-linear
automorphism of E for each g ∈ G, and that τ(gh) = τ(g)τ(h). Notice that for
v ∈ V and A ∈ E the formula means

(τ(g)A)(v) := (%(g) ◦A ◦ %(g−1))(v).

Hence τ(g)A ∈ E for each A ∈ E and g ∈ G, so that τ(g) ∈ End(E). Moreover,
multiplicativity of % implies immediately the multiplicative of τ , which at the
same time implies that indeed τ(g) ∈ GL(E) for each g and that the resulting
τ : G→ GL(E) is a group homomorphism.

2. This is an immediate computation:

EG
def
= {A ∈ E : ∀g ∈ G, τ(g)A = A}
= {A ∈ E : ∀g ∈ G, %(g) ◦A ◦ %(g)−1 = A}

= {A ∈ E : ∀g ∈ G, %(g) ◦A = A ◦ %(g)} def
= HomG(V, V ).

2. Let
% : G→ GL(V )

be a K-representation of a group G, and let

χ : G→ K×

be a one-dimensional representation.

Please turn over!



1. Show that defining
%χ(g) = χ(g)%(g)

gives a representation %χ of G on V .

2. Show that a subspace W of V is stable under % if and only if it is stable under %χ.

3. Show that % is irreducible (resp. semisimple) if and only if %χ is irreducible (resp.
semisimple).

Solution:

1. It is clear that χ(g)%(g) ∈ End(V ) for each g ∈ G. It is the endomorphism of V
sending v 7→ (χ(g)%(g)) · (v) := χ(g) · (%(g)(v)). Moreover, for g, h ∈ G we see that

%χ(gh) = χ(gh)%(gh) = χ(g)χ(h)%(g)%(h) = χ(g)%(g)χ(h)%(h) = %χ(g)%χ(h),

since constant multiplication commutes with endomorphisms (by definition of lin-
earity). Else %χ is a representation of G on V .

2. For each g ∈ G and linear subspace W ⊆ V , we have

%χ(g)(W ) = χ(g)%(g)(W ) = %(g)(W ),

so that W is stable under %(g) if and only it is stable under %χ(g). Hence W is
stable under % if and only if it is stable under %χ.

3. The statement concerning irreducibility is immediate from the previous point and
the definition of irreducible representation. Moreover, decomposition in direct
sums of the two representation correspond (since a decomposition of one of the two
representation is just a decomposition of vector spaces V = W ⊕W ′ where W,W ′

are stable under the representation, and stability under % and %χ are equivalent
by the previous point).

3. Let G = C, V = C2 and define % by

%(z) =

(
1 z
0 1

)
∈ GL(V ).

1. Show that % is a representation of G on V .

2. Show that the line L ⊂ V spanned by the first basis vector is a subrepresentation
of G.

3. Show that there does not exist a subspace W ⊂ V such that L⊕W = V and W
is a subrepresentation.

4. Show that % is not semisimple.

Solution:
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1. Each of the given matrices %(x) is invertible (as it has positive determinant), so
that %(z) ∈ GL(V ). Matrix operations give moreover %(z)%(w) = %(z+w), so that
% is indeed a representation of G = C on V .

2. We take e1 = (1, 0), e2 = (0, 1), so that V = C · e1 + C · e2. Then L = 〈e1〉C,

and for each z ∈ G = C we have %(z)L = 〈%(z)e1〉 =

〈(
1 z
0 1

)(
1
0

)〉
=〈(

1
0

)〉
= L, and L is a subrepresentation of G.

3. A subspace W such that L⊕W = V as complex vector spaces is spanned by any
vector α1 · e1 + α2 · e2 with αi ∈ C and α2 6= 0. It is enough to restrict attention
to α2 = 1. For Wα = 〈vα := α · e1 + e2〉 to be a subrepresentation of G we need
that %(z)vα ∈Wα. In particular, we need %(1)vα ∈Wα, but

%(1)vα = (α+ 1) · e1 + e2 = vα + e1,

which clearly does not lie in Wα. Hence L is a subrepresentation of G, but it is
not a direct summand of V as a subrepresentation of G

4. Taking L from the previous point gives a subrepresentation which is not a direct
summand of V as a representation of G, showing that V is not semisimple.

4. Let
% : G→ GL(V )

be a K-representation of a group G. Let V ′ be the dual vector space to V .

1. Define π(g) ∈ End(V ′) by the relation

(π(g)(λ))(v) = λ(%(g−1)(v))

for λ ∈ V ′ and v ∈ V . Show that this is a representation of G on V ′ (it is called
the contragredient of %).

2. If dim(V ) is finite, find a natural bijection between subrepresentations of % and
subrepresentations of π.

3. Deduce that if dim(V ) is finite, then % is irreducible if and only if π is irreducible.

4. If dim(V ) is finite, show that the bidual V ′′, with the contragredient of the con-
tragredient representation, is isomorphic to V as a representation of G.

Solution:

1. The definition tells us that for each g ∈ G and λ ∈ V ′, one has π(g)(λ) = λ◦%(g−1),
and this is clearly a K-linear map V −→ K, i.e., an element of V ′. Moreover, for
g, h ∈ G we have

π(gh)(λ) = λ ◦ %(h−1g−1) = λ ◦ %(h−1) ◦ %(g−1)

= π(g)(π(h))(λ),

and this proves that π is indeed a group representation of G on V ′.
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2. Let us first find a bijection between subspaces of V and subspaces of V ′, and then
prove that it is compatible with the given representations. Recall that we have a
canonical K-linear map

γ : V −→ V ′′ (1)

v 7→ evv : (α 7→ α(v)), (2)

which is easily seen to be injective. When dim(V ) is finite, this is then an iso-
morphism of K-vector spaces (as dim(V ) = dim(V ′) = dim(V ′′)). Let us denote
by Sub(W ) the set of linear subspaces of W for any K-vector space W . Then we
have a map

ϑV : Sub(V ) −→ Sub(V ′) (3)

U 7→ AnnV ′(U) := {α ∈ V ′ : α(U) = 0} (4)

and a bijection induced by γ

γ∗ : Sub(V )
∼−→ Sub(V ′′) (5)

U 7→ γ(U). (6)

We claim that γ−1 ◦ ϑV ′ is an inverse of ϑV :

a) γ−1∗ ◦ ϑV ′ ◦ ϑV = idSub(V ): we have to check that for each subspace U ⊆ V
one has γ−1∗ AnnV ′′(AnnV ′(U)) = U , i.e., AnnV ′′(AnnV ′(U)) = γ(U), and this
is done directly:

AnnV ′′(AnnV ′(U)) = {a ∈ V ′′ : a(α) = 0, ∀α ∈ V ′ : α(U) = 0}
= {γ(u) : u ∈ V, α(u) = 0, ∀α ∈ V ′ : α(U) = 0}
= γ(U).

Notice that in the last equality the inclusion ⊇ is trivial, while for the other
inclusion one can see that for u′ ∈ V \ U there is a basis of V obtained by the
union of a basis of U with a set of vectors of V which contains u′, so that u′

can be sent to a non-zero vector by some α which annihilates U .

b) ϑV ◦ γ−1 ◦ ϑV ′ = idSub(V ′): we have to check that for each subspace U ′ ⊆ V ′

we have AnnV ′(γ−1(AnnV ′′(U ′))) = U ′. We indeed have

AnnV ′(γ−1(AnnV ′′(U ′))) = {α ∈ V ′ : α(u) = 0,∀u ∈ V : evu(U ′) = 0}
= {α ∈ V ′ : α(u) = 0,∀u ∈ V : u′(u) = 0,∀u′ ∈ U ′}
= U ′,

where again the non-trivial inclusion ⊆ is proved similarly as in the previous
point.

Then ϑV is a bijection Sub(V )
∼−→ Sub(V ′). Notice that for U ′ ∈ Sub(V ′) we

have

γ−1∗ ϑV ′(U ′) = {u ∈ V : γ(u)(U ′) = 0}
= {u ∈ V : α(u) = 0, ∀α ∈ U ′} =: KerV (U ′).
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It is easily checked that both AnnV ′ and KerV ′ reverse inclusions, so that in
particular for all U1, U2 ∈ Sub(V ) one has

(∗) U1 ⊆ U2 ⇐⇒ AnnV ′(U1) ⊇ AnnV ′(U2).

Let us now check that ϑV is compatible with the representations. We have to
prove that for W ∈ Sub(V ) one has that W is fixed by each %(g) if and only if
AnnV ′(W ) is fixed by each π(g).

We have

π(g)(AnnV ′(W )) ⊆ AnnV ′(W ) ⇐⇒ π(g)(α) ∈ AnnV ′(W ), ∀α ∈ AnnV ′(W )

⇐⇒ α(%(g−1)(W )) = 0,∀α ∈ AnnV ′(W )

⇐⇒ AnnV ′(W ) ⊆ AnnV ′(%(g−1)W )

(∗)⇐⇒ %(g−1)W ⊆W.

This proves our claim, as g 7→ g−1 is a bijection of G.

3. This is an immediate consequence from the previous point, as the bijection we
found sends V 7→ 0 and 0 7→ V ′. Recall that irreducibility means that the only
subrepresentations are 0 and the whole representation.

4. This just accounts to prove that subrepresentations of G on V and V ′′ correspond
bijectively via γ∗. In point 2, we proved that γ∗ = ϑV ′ ◦ ϑV , and that ϑV (and
hence ϑV ′) restricts to a bijective correspondence of subrepresentations (by taking
the contragradient representation on V ′). Clearly this property is preserved by
composition, whence our claim.


