Exercise sheet 11

1. Let

$$
\varrho: G \rightarrow \mathrm{GL}(V)
$$

be a K-representation of a group G. Let $E=\operatorname{End}(V)$ be the vector space of linear maps from V to V.

1. Show that defining

$$
\tau(g) A=g A g^{-1}
$$

defines a representation τ of G on E.
2. Show that E^{G}, the space of fixed points of E for this representation, is equal to $\operatorname{Hom}_{G}(V, V)$.

Solution:

1. We need to check that the given formula defines a group homomorphism τ : $G \rightarrow \mathrm{GL}(E)$. This accounts to checking that $\tau(g): A \mapsto g A g^{-1}$ is a K-linear automorphism of E for each $g \in G$, and that $\tau(g h)=\tau(g) \tau(h)$. Notice that for $v \in V$ and $A \in E$ the formula means

$$
(\tau(g) A)(v):=\left(\varrho(g) \circ A \circ \varrho\left(g^{-1}\right)\right)(v) .
$$

Hence $\tau(g) A \in E$ for each $A \in E$ and $g \in G$, so that $\tau(g) \in \operatorname{End}(E)$. Moreover, multiplicativity of ϱ implies immediately the multiplicative of τ, which at the same time implies that indeed $\tau(g) \in \mathrm{GL}(E)$ for each g and that the resulting $\tau: G \rightarrow \mathrm{GL}(E)$ is a group homomorphism.
2. This is an immediate computation:

$$
\begin{aligned}
E^{G} & \stackrel{\text { def }}{=}\{A \in E: \forall g \in G, \tau(g) A=A\} \\
& =\left\{A \in E: \forall g \in G, \varrho(g) \circ A \circ \varrho(g)^{-1}=A\right\} \\
& =\{A \in E: \forall g \in G, \varrho(g) \circ A=A \circ \varrho(g)\} \stackrel{\text { def }}{=} \operatorname{Hom}_{G}(V, V) .
\end{aligned}
$$

2. Let

$$
\varrho: G \rightarrow \mathrm{GL}(V)
$$

be a K-representation of a group G, and let

$$
\chi: G \rightarrow K^{\times}
$$

be a one-dimensional representation.

1. Show that defining

$$
\varrho_{\chi}(g)=\chi(g) \varrho(g)
$$

gives a representation ϱ_{χ} of G on V.
2. Show that a subspace W of V is stable under ϱ if and only if it is stable under ϱ_{χ}.
3. Show that ϱ is irreducible (resp. semisimple) if and only if ϱ_{χ} is irreducible (resp. semisimple).

Solution:

1. It is clear that $\chi(g) \varrho(g) \in \operatorname{End}(V)$ for each $g \in G$. It is the endomorphism of V sending $v \mapsto(\chi(g) \varrho(g)) \cdot(v):=\chi(g) \cdot(\varrho(g)(v))$. Moreover, for $g, h \in G$ we see that

$$
\varrho_{\chi}(g h)=\chi(g h) \varrho(g h)=\chi(g) \chi(h) \varrho(g) \varrho(h)=\chi(g) \varrho(g) \chi(h) \varrho(h)=\varrho_{\chi}(g) \varrho_{\chi}(h),
$$

since constant multiplication commutes with endomorphisms (by definition of linearity). Else ϱ_{χ} is a representation of G on V.
2. For each $g \in G$ and linear subspace $W \subseteq V$, we have

$$
\varrho_{\chi}(g)(W)=\chi(g) \varrho(g)(W)=\varrho(g)(W),
$$

so that W is stable under $\varrho(g)$ if and only it is stable under $\varrho_{\chi}(g)$. Hence W is stable under ϱ if and only if it is stable under ϱ_{χ}.
3. The statement concerning irreducibility is immediate from the previous point and the definition of irreducible representation. Moreover, decomposition in direct sums of the two representation correspond (since a decomposition of one of the two representation is just a decomposition of vector spaces $V=W \oplus W^{\prime}$ where W, W^{\prime} are stable under the representation, and stability under ϱ and ϱ_{χ} are equivalent by the previous point).
3. Let $G=\mathbb{C}, V=\mathbb{C}^{2}$ and define ϱ by

$$
\varrho(z)=\left(\begin{array}{ll}
1 & z \\
0 & 1
\end{array}\right) \in \operatorname{GL}(V) .
$$

1. Show that ϱ is a representation of G on V.
2. Show that the line $L \subset V$ spanned by the first basis vector is a subrepresentation of G.
3. Show that there does not exist a subspace $W \subset V$ such that $L \oplus W=V$ and W is a subrepresentation.
4. Show that ϱ is not semisimple.

Solution:

1. Each of the given matrices $\varrho(x)$ is invertible (as it has positive determinant), so that $\varrho(z) \in \operatorname{GL}(V)$. Matrix operations give moreover $\varrho(z) \varrho(w)=\varrho(z+w)$, so that ϱ is indeed a representation of $G=\mathbb{C}$ on V.
2. We take $e_{1}=(1,0), e_{2}=(0,1)$, so that $V=\mathbb{C} \cdot e_{1}+\mathbb{C} \cdot e_{2}$. Then $L=\left\langle e_{1}\right\rangle_{\mathbb{C}}$, and for each $z \in G=\mathbb{C}$ we have $\varrho(z) L=\left\langle\varrho(z) e_{1}\right\rangle=\left\langle\left(\begin{array}{ll}1 & z \\ 0 & 1\end{array}\right)\binom{1}{0}\right\rangle=$ $\left\langle\binom{ 1}{0}\right\rangle=L$, and L is a subrepresentation of G.
3. A subspace W such that $L \oplus W=V$ as complex vector spaces is spanned by any vector $\alpha_{1} \cdot e_{1}+\alpha_{2} \cdot e_{2}$ with $\alpha_{i} \in \mathbb{C}$ and $\alpha_{2} \neq 0$. It is enough to restrict attention to $\alpha_{2}=1$. For $W_{\alpha}=\left\langle v_{\alpha}:=\alpha \cdot e_{1}+e_{2}\right\rangle$ to be a subrepresentation of G we need that $\varrho(z) v_{\alpha} \in W_{\alpha}$. In particular, we need $\varrho(1) v_{\alpha} \in W_{\alpha}$, but

$$
\varrho(1) v_{\alpha}=(\alpha+1) \cdot e_{1}+e_{2}=v_{\alpha}+e_{1},
$$

which clearly does not lie in W_{α}. Hence L is a subrepresentation of G, but it is not a direct summand of V as a subrepresentation of G
4. Taking L from the previous point gives a subrepresentation which is not a direct summand of V as a representation of G, showing that V is not semisimple.
4. Let

$$
\varrho: G \rightarrow \mathrm{GL}(V)
$$

be a K-representation of a group G. Let V^{\prime} be the dual vector space to V.

1. Define $\pi(g) \in \operatorname{End}\left(V^{\prime}\right)$ by the relation

$$
(\pi(g)(\lambda))(v)=\lambda\left(\varrho\left(g^{-1}\right)(v)\right)
$$

for $\lambda \in V^{\prime}$ and $v \in V$. Show that this is a representation of G on V^{\prime} (it is called the contragredient of ϱ).
2. If $\operatorname{dim}(V)$ is finite, find a natural bijection between subrepresentations of ϱ and subrepresentations of π.
3. Deduce that if $\operatorname{dim}(V)$ is finite, then ϱ is irreducible if and only if π is irreducible.
4. If $\operatorname{dim}(V)$ is finite, show that the bidual $V^{\prime \prime}$, with the contragredient of the contragredient representation, is isomorphic to V as a representation of G.

Solution:

1. The definition tells us that for each $g \in G$ and $\lambda \in V^{\prime}$, one has $\pi(g)(\lambda)=\lambda \circ \varrho\left(g^{-1}\right)$, and this is clearly a K-linear map $V \longrightarrow K$, i.e., an element of V^{\prime}. Moreover, for $g, h \in G$ we have

$$
\begin{aligned}
\pi(g h)(\lambda) & =\lambda \circ \varrho\left(h^{-1} g^{-1}\right)=\lambda \circ \varrho\left(h^{-1}\right) \circ \varrho\left(g^{-1}\right) \\
& =\pi(g)(\pi(h))(\lambda),
\end{aligned}
$$

and this proves that π is indeed a group representation of G on V^{\prime}.
2. Let us first find a bijection between subspaces of V and subspaces of V^{\prime}, and then prove that it is compatible with the given representations. Recall that we have a canonical K-linear map

$$
\begin{align*}
\gamma: V & \longrightarrow V^{\prime \prime} \tag{1}\\
& v \mapsto \mathrm{ev}_{v}:(\alpha \mapsto \alpha(v)), \tag{2}
\end{align*}
$$

which is easily seen to be injective. When $\operatorname{dim}(V)$ is finite, this is then an isomorphism of K-vector spaces (as $\operatorname{dim}(V)=\operatorname{dim}\left(V^{\prime}\right)=\operatorname{dim}\left(V^{\prime \prime}\right)$). Let us denote by $\operatorname{Sub}(W)$ the set of linear subspaces of W for any K-vector space W. Then we have a map

$$
\begin{align*}
\vartheta_{V}: \operatorname{Sub}(V) & \longrightarrow \operatorname{Sub}\left(V^{\prime}\right) \tag{3}\\
U & \mapsto \operatorname{Ann}_{V^{\prime}}(U):=\left\{\alpha \in V^{\prime}: \alpha(U)=0\right\} \tag{4}
\end{align*}
$$

and a bijection induced by γ

$$
\begin{align*}
\gamma_{*}: \operatorname{Sub}(V) & \xrightarrow{\sim} \operatorname{Sub}\left(V^{\prime \prime}\right) \tag{5}\\
U & \mapsto \gamma(U) . \tag{6}
\end{align*}
$$

We claim that $\gamma^{-1} \circ \vartheta_{V^{\prime}}$ is an inverse of ϑ_{V} :
a) $\gamma_{*}^{-1} \circ \vartheta_{V^{\prime}} \circ \vartheta_{V}=\operatorname{id}_{\operatorname{Sub}(V)}$: we have to check that for each subspace $U \subseteq V$ one has $\gamma_{*}^{-1} \mathrm{Ann}_{V^{\prime \prime}}\left(\operatorname{Ann}_{V^{\prime}}(U)\right)=U$, i.e., $\operatorname{Ann}_{V^{\prime \prime}}\left(\operatorname{Ann}_{V^{\prime}}(U)\right)=\gamma(U)$, and this is done directly:

$$
\begin{aligned}
\operatorname{Ann}_{V^{\prime \prime}}\left(\operatorname{Ann}_{V^{\prime}}(U)\right) & =\left\{a \in V^{\prime \prime}: a(\alpha)=0, \forall \alpha \in V^{\prime}: \alpha(U)=0\right\} \\
& =\left\{\gamma(u): u \in V, \alpha(u)=0, \forall \alpha \in V^{\prime}: \alpha(U)=0\right\} \\
& =\gamma(U) .
\end{aligned}
$$

Notice that in the last equality the inclusion \supseteq is trivial, while for the other inclusion one can see that for $u^{\prime} \in V \backslash U$ there is a basis of V obtained by the union of a basis of U with a set of vectors of V which contains u^{\prime}, so that u^{\prime} can be sent to a non-zero vector by some α which annihilates U.
b) $\vartheta_{V} \circ \gamma^{-1} \circ \vartheta_{V^{\prime}}=\operatorname{id}_{\operatorname{Sub}\left(V^{\prime}\right)}$: we have to check that for each subspace $U^{\prime} \subseteq V^{\prime}$ we have $\operatorname{Ann}_{V^{\prime}}\left(\gamma^{-1}\left(\operatorname{Ann}_{V^{\prime \prime}}\left(U^{\prime}\right)\right)\right)=U^{\prime}$. We indeed have

$$
\begin{aligned}
\operatorname{Ann}_{V^{\prime}}\left(\gamma^{-1}\left(\operatorname{Ann}_{V^{\prime \prime}}\left(U^{\prime}\right)\right)\right) & =\left\{\alpha \in V^{\prime}: \alpha(u)=0, \forall u \in V: e_{u}\left(U^{\prime}\right)=0\right\} \\
& =\left\{\alpha \in V^{\prime}: \alpha(u)=0, \forall u \in V: u^{\prime}(u)=0, \forall u^{\prime} \in U^{\prime}\right\} \\
& =U^{\prime},
\end{aligned}
$$

where again the non-trivial inclusion \subseteq is proved similarly as in the previous point.
Then ϑ_{V} is a bijection $\operatorname{Sub}(V) \xrightarrow{\sim} \operatorname{Sub}\left(V^{\prime}\right)$. Notice that for $U^{\prime} \in \operatorname{Sub}\left(V^{\prime}\right)$ we have

$$
\begin{aligned}
\gamma_{*}^{-1} \vartheta_{V^{\prime}}\left(U^{\prime}\right) & =\left\{u \in V: \gamma(u)\left(U^{\prime}\right)=0\right\} \\
& =\left\{u \in V: \alpha(u)=0, \forall \alpha \in U^{\prime}\right\}=: \operatorname{Ker}_{V}\left(U^{\prime}\right) .
\end{aligned}
$$

It is easily checked that both $\mathrm{Ann}_{V^{\prime}}$ and $\mathrm{Ker}_{V^{\prime}}$ reverse inclusions, so that in particular for all $U_{1}, U_{2} \in \operatorname{Sub}(V)$ one has

$$
\text { (*) } \quad U_{1} \subseteq U_{2} \Longleftrightarrow \operatorname{Ann}_{V^{\prime}}\left(U_{1}\right) \supseteq \operatorname{Ann}_{V^{\prime}}\left(U_{2}\right) .
$$

Let us now check that ϑ_{V} is compatible with the representations. We have to prove that for $W \in \operatorname{Sub}(V)$ one has that W is fixed by each $\varrho(g)$ if and only if $\mathrm{Ann}_{V^{\prime}}(W)$ is fixed by each $\pi(g)$.
We have

$$
\begin{aligned}
\pi(g)\left(\operatorname{Ann}_{V^{\prime}}(W)\right) & \subseteq \operatorname{Ann}_{V^{\prime}}(W) \Longleftrightarrow \pi(g)(\alpha) \in \operatorname{Ann}_{V^{\prime}}(W), \forall \alpha \in \operatorname{Ann}_{V^{\prime}}(W) \\
& \Longleftrightarrow \alpha\left(\varrho\left(g^{-1}\right)(W)\right)=0, \forall \alpha \in \operatorname{Ann}_{V^{\prime}}(W) \\
& \Longleftrightarrow \operatorname{Ann}_{V^{\prime}}(W) \subseteq \operatorname{Ann}_{V^{\prime}}\left(\varrho\left(g^{-1}\right) W\right) \\
& \Longleftrightarrow \Longleftrightarrow\left(g^{-1}\right) W \subseteq W .
\end{aligned}
$$

This proves our claim, as $g \mapsto g^{-1}$ is a bijection of G.
3. This is an immediate consequence from the previous point, as the bijection we found sends $V \mapsto 0$ and $0 \mapsto V^{\prime}$. Recall that irreducibility means that the only subrepresentations are 0 and the whole representation.
4. This just accounts to prove that subrepresentations of G on V and $V^{\prime \prime}$ correspond bijectively via γ_{*}. In point 2 , we proved that $\gamma_{*}=\vartheta_{V^{\prime}} \circ \vartheta_{V}$, and that ϑ_{V} (and hence $\vartheta_{V^{\prime}}$) restricts to a bijective correspondence of subrepresentations (by taking the contragradient representation on V^{\prime}). Clearly this property is preserved by composition, whence our claim.

