Prof. Emmanuel Kowalski

Ferienserie

1. Let G be a finite group.

- 1. Show that if ϱ is an irreducible representation of G over \mathbb{C} , it is finite-dimensional.
- 2. Show that G is abelian if and only if all irreducible representations of G over \mathbb{C} are one-dimensional. [Hint: to show one implication, apply Schur's Lemma; for the other, count conjugacy classes.]
- 3. Let ϱ be an irreducible finite-dimensional complex representation of G. Let H be the center of G. Show that there exists a homomorphism $\omega: H \to \mathbb{C}^{\times}$ such that

$$\varrho(h) = \omega(h) \mathrm{Id}$$

for all $h \in H$ (namely, the center of G acts by scalars).

2. Let G be a finite group, and let

$$\varrho: G \to \mathrm{GL}(V)$$

be a finite-dimensional complex representation of G. Let $E = \operatorname{End}(V)$ be the vector space of linear maps from V to V.

Show that the character of the representation $\tau: G \to \mathrm{GL}(E)$ defined by

$$\tau(g)A = gAg^{-1}$$

is $\chi_{\tau}(g) = |\chi_{\varrho}(g)|^2$, where χ_{ϱ} is the character of ϱ .

3. Let $\varrho: G \to \operatorname{GL}(V)$ be a finite-dimensional complex representation of a finite group G. Consider the linear transformation $P: V \to V$ defined by

$$P(v) = \frac{1}{|G|} \sum_{g \in G} \varrho(g)v.$$

- 1. Show that P is a linear projection on the subspace V^G of vectors invariant under ϱ (i.e., $P \circ P = P$, and the image of P is V^G).
- 2. Show that $P \in \text{Hom}_G(V, V)$.
- 3. Let $\langle \cdot, \cdot \rangle$ be an inner-product on V such that $\varrho(g)$ is unitary with respect to the inner-product for all g. Show that P is the orthogonal projection on V^G .

4. Show that the dimension of V^G is given by

$$\dim V^G = \sum_{g \in G} \chi_{\varrho}(g)$$

where χ_{ϱ} is the character of G.

- **4.** Let G be a finite group. Let $n \geq 1$, and suppose that G acts on the finite set $X_n = \{1, \ldots, n\}$. Let $V = \mathbb{C}^n$ and (e_1, \ldots, e_n) the canonical basis of V.
 - 1. Show that if we define $\varrho(g):V\to V$ by

$$\varrho(g)e_i = e_{g \cdot i},$$

we obtain a representation of G on V.

2. Show that the character of ϱ is given by

$$\chi_{\varrho}(g) = |\{i \in X_n \mid g \cdot i = i\}|.$$

3. Assume that G acts transitively on X_n . Show that

$$\dim V^G = 1$$
,

and identify a generator of V^G .

4. Show that the subspace

$$W = \{(x_1, \dots, x_n) \in V \mid x_1 + \dots + x_n = 0\}$$

is a subrepresentation of V. Let π be the representation of G on W. Show that

$$\chi_{\pi}(g) = \chi_{\varrho}(g) - 1.$$

Assume now that $n \geq 2$ and that G acts doubly-transitively on X_n : for any $i \neq j$ in X_n , there exists $g \in G$ such that $g \cdot 1 = i$ and $g \cdot 2 = j$.

5. Show that for any $i \neq j$, the subset

$$\{g \in G \mid g \cdot 1 = i \text{ and } g \cdot 2 = j\}$$

has the same size.

6. Show that

$$\frac{1}{|G|} \sum_{g \in G} |\chi_{\pi}(g)|^2 = 1,$$

and deduce that the action of G on W is irreducible.