D-MATH Algebra IT FS 15
Prof. Emmanuel Kowalski

Solutions of exercise sheet 1

1. Let K be a field. For each of the following statements, indicate whether it is true (with
a proof) or false (by giving and explaining a counterexample):

1.
2.

w
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Every algebraic extension L of K is a finite extension.
The field C is an algebraic closure of Q.

Let L/K be a finite extension and = € L; if P is the minimal polynomial of z,
then we have [L : K| = deg(P).

The separable degree of the extension Q(v/2)/Q is 4.

There exists a finite field of order 243.

The extension Q(exp(2im/123))/Q is algebraic.

If K9/K; and K1 /K are algebraic extensions, then Ky/K is algebraic.

Let L = Q(V/2, exp(2i7/127),1/3 + v/12); there exists 2 € C such that L = Q(z).

Let L/K be a separable field extension and n > 1 an integer such that [K(z) :
K] <nforall x € L; then [L : K| < n.

Solution:

. False. For instance, the algebraic closure I, of the finite field F, is infinite (as seen

in the first semester, one can embed for n a positive integer each field IF» inside
F,,. Since a finite extension of a finite field is finite, ¥, is not a finite extension of
IF,. But an algebraic closure is an algebraic extension by definition, so that this
is indeed a counterexample.

. False. € is not an algebraic extension of @, so by definition of algebraic closure

it cannot be an algebraic closure of ). The fact that this is a transcendental
extension can be stated by proving, for instance, that e or m are not algebraic.
However the proof is not trivial (this is done more in general by the Lindemann-
Weierstrass Theorem).

. False. For instance, let K = Q and L = Q(+v/2). We have [L : K] = 4, but for the

element z = /2 has minimal polynomial P(X) = X2 — 2 of degree 2.

. True. Indeed, there are precisely 4 embedding of Q(v/2) = Q[X]/(X* — 2) inside

@ which fix Q. Indeed, such an embedding is determined by choosing an image
of v/2, which simply needs to be a root of X* — 2, which is separable (it has 4
distinct roots v/2i*, where k = 0, 1,2, 3).

. True, because 243 = 3° and we can build Fay3 as a particular degree-5 extension

of ]Fg.
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6. True, because {123 = exp(2im/123) is algebraic over @), and algebraic elements

generate algebraic extensions. Indeed, 193 is a root of the polynomial X123 —1 ¢
Q[X]. The minimal polynomial is the 123-th cyclotomic polynomial

D193(X) = H (X — &fa3)-
1<k<122
(k,123)=1

True. Take z € Ko and let P = X" +a; X" 1 + -+ +a,_1X +a, € K1[X] be its
minimal polynomial. Denote Ky = K(ay,...,a,). The extension Ky/K is finite
(since it is finitely generated and algebraic). Also the extension Ko(z)/Kj is finite,
because z is algebraic over Ky by construction. Since finiteness is preserved in
towers, the extension Ky(z)/K is finite, and so is the subextension K (z)/K. In
particular, K (x)/K is algebraic, and z is algebraic over K.

. True. Let a = /2, 8 = exp(2i7/127) and v = /3 + v/12. Those three elements

of € are algebraic over }:
e « is a root of X2 —2;
e [ is aroot of X127 —1;
e 7 is a root of (X% —3)*—12.
Then L is a finitely generated algebraic extension of @), so that it is finite. We

also know that finite extensions of @) are always separable, so that we can apply
the primitive element theorem and get that there exists x € L C C such that

L =Q(x).

. True. Without loss of generality we can assume that n is minimal, so that there

exists z € L such that [K(z) : K] = n. Suppose by contradiction that [L : K| > n.
Then K(z) # L and we can take y € L\ K(z). Then, for Ly := K(z,y), we get
that Ly/K is a finitely generated algebraic separable extension, so that it is finite

and separable and we can apply the primitive element theorem, obtaining z € Lg
such that Ly = K(z). Then

[K(z): K] =[K(z,y): K| = [K(z,y) : K(z)][K(z) : K] > [K(x) : K] =n,

contradiction.

2. Let x =2 + V3.

1.

Prove that Q(x) = Q(v/2, v/3). [Hint: Find the minimal polynomial of z — /2
and expand|

2. Compute the minimal polynomial of x over Q(v/2). [Hint: [Q(z) : Q(v2)] =7]

. Compute the minimal polynomial of x over Q.

Solution:
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1. Clearly, Q(z) € Q(v/2, ¥/3). For the other inclusion, it is enough to prove that
V2 € Q(x), since this also implies that /3 = x—+/2 € Q(x). This can be done by
trying to solve Point (2): from (z—+/2)3 = 3 we deduce 2> 462 —3 = v/2(322+2),
so that 5

2 +6x —3

g T .

V2 3z2 +2 € Q(x)
2. From the previous point, we have that x satisfies the polynomial

Q(X) = X% - 3V2X? +6X — 22 — 3 € Q(V2)[X].

To prove that this is the minimal polynomial, it is enough to prove that Q(x) =
Q(v/2)(V/3) is a degree-3 extension of Q(1/2), which is equivalent to saying that
/3 has degree 3 over Q(\/i) To prove this last equivalent statement, notice that
/3 is a root of the polynomial f = X3 — 3 € Q(v/2)[X], which can be easily
checked to be irreducible. Indeed deg(f) = 3, so that it is enough to check that
f has no root in Q(v/2). For every element a + bv/2 € Q(v/2), with a,b € @, we
have (as 1 and /2 are linear independent over Q):

a3 + 6ab® = 3

3 _

The second equation holds for b = 0 or 3a? + 2b%> = 0, which both give b = 0, so
that a® = 3, impossible in Q. Hence [Q(x) : Q] = 3 and 2 has minimal polynomial
Q over Q(v2).
3. We have that [Q(v/2) : Q] = 2, so that from what we found in the previous point
we get
Q) : Q) = Q) : QIV2R(V2) : Q] = 6.
Then the minimal polynomial of  over @) has degree 6.

Now, continuing the computations from Point (1) we get
2% 4 3622 + 9 + 1221 — 62° — 360 = 2(92" + 1222 + 4),
so that z is a root of P(X) = X% — 6X* — 6X3 4+ 12X? — 36X + 1, which by our
previous discussion is the minimal polynomial of z over Q.
3. Let p be a prime number and K a field of characteristic p. Let ¢ : K — K be the
Frobenius morphism given by ¢(z) = zP.
1. Give an example of field K where ¢ is surjective, and an example where it is not.

We assume that ¢ is surjective.

2. Let P € K[X] be a polynomial such that P’ = 0. Prove that there exists Q € K[X]
such that P = QP.

3. Deduce that any irreducible polynomial P € K[X] is separable.
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4.

Deduce that any algebraic extension L/K is separable.

Solution:

1.

¢ is always injective (as ker(¢) = 0), so that it is surjective when K is finite (e.g.,
K =T,). On the other hand, for K = F,(T) we have ¢(K) = F,(T?) (indeed,
o(Fp[X]) = F,[X] by surjectivity of ¢ on FF), and the fact that ¢ is additive, so
that the isomorphism ¢ : F)[T] — F,,[T?] extends to the corresponding fraction
fields). In particular, ¢ is not surjective for K = IF,(T).

Write P = " ja;X’. Then P’ = Y7 jia; X~ = 0 gives ia; for each i which
implies that a; = 0 for p 1 i, so that P € K[XP] = ¢(K[X]) as in the previous
point (because we are now assuming that ¢ is surjective), meaning that there is a
polynomial @ € K|[X] such that QP = P.

. Suppose that P is irreducible. As seen in class, P is then separable if and only

if P’ # 0. But if by contradiction P’ = 0, then by previous point P = QP,
contradiction with P irreducible.

. It is enough to prove that every x € L is separable over K, that is, it has separable

minimal polynomial. This is immediate from the previous point together with the
irreducibility of the minimal polynomial.

4. Find an element z € K = Q(v/2,v/3) such that K = Q(z).

Solution:

We claim that z = v/2 + /3 is such an element. Of course, K O Q(x). On the other
hand, x(\/g—\/i):?)—Q:l, so that V3 —v2 =21 € K. Then

%(:wr\f—\@):\/ﬁel(,

and it follows that v/2 € Q(z) as well. This implies K = Q(z).

5. Let K be a field and let £y and Es be two algebraically closed extensions of K. Let
K1 and Ky denote the algebraic closure of K in E; and FEs respectively.

Let L be an algebraic extension of K.

1. Show that for any field honlomorphism o : L — Ej such that o|x = Idg, the
image o (L) is contained in Kj.
2. Show that the number of field homomorphisms o : L — E; such that o|x = Idg
is equal to the number of field homomorphisms o : L — F5 such that o|x = Idg.
Solution:
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1. Let z € L, i € {1,2} and 0 : L — E; such that o|x = Idx. Being L an algebraic
extension of K, there exist a minimal polynomial P of x, so that P(z) = 0. Then

which implies that o(z) is algebraic over K, so that o(z) € K;. Then o(L) = K;.
2. Given two field extensions N1, Ny of K, denote

Hompg m(N1, Na) := {¢p : Ny — N3|¢ is a field homomorphism and v|x = Idg}.

From the previous point we get that for ¢ = 1, 2 the field homomorphisms L — E;;
which fix K can be identified with those L — K; simply by restricting the
codomain. So there is a bijection 7; : Homg (L, B;) — Homg m(L, K;). By
unicity of the algebraic closure, there exists an isomorphism ¢ : K — Ko, which
(similarly as in Exercise 4 from Exercise Sheet 7 from Algebra I) induces the map
¢* : Homg m (L, K1) — Homg (L, K2) sending 7 + ¢ o 7, which is easily seen
to have inverse (¢~1)*: o0 ¢l oo.

In conclusion,
Hompg (L, B1) — Hompg m(L, K1) — Hompg m (L, K2) «— Homg (L, Es),

so that in particular Homg 1, (L, E1) and Hompg v, (L, E2) are in bijection as we
were asked to prove.

N.B. The sets Homg, m(N1, N2) have a natural structure of K-vector spaces, and
all the bijections we wrote are actually isomorphisms of K-vector spaces.



