D-MATH Algebra 1 HS 14
Prof. Emmanuel Kowalski

Solutions of exercise sheet 2

1. Let k be a field with char(k) # 2.

1. Let a,b € k be such that a is a square in k(/3), where [ is an element algebraic over
k such that 32 = b. Prove that either a or ab is a square in k. [Hint: Distinguish
the cases 3 € k and 3 ¢ k. For the second case, expand (c + dB)?, for ¢, d € k.]

2. Now consider K = k(u,v), where u,v ¢ k are elements in an algebraic extension
of k such that u?,v? € k. Set v = u(v + 1). Prove: K = k(7).

Solution:

1. If 8 € k, then k(B) = k, so that a is a square in k. Else, ( is algebraic of order
2 over k, and any element in k(8) can be expressed as ¢ + df, with ¢,d € k. In
particular, for some ¢ and d in k£ we have

a=(c+dB)? = (c*+bd*) + 2cdp,
which gives, since 1 and 8 are two k-linear independent elements,
a=c®+bd%, 2cd = 0.

Then, since char(k) # 2, we get c¢d = 0, implying that ¢ =0 or d = 0. If d = 0,
then a = c? is a square in k. Else ¢ = 0, and a = bd?, so that ab = b%d?> = (bd)? is
a square in k.

2. The inclusion K D k() is clear, since v = u(v + 1) € k(u,v) = K. To prove the
other inclusion, we need to show that u,v € k(7). We have

E(y) 2 4% = u*(v* 4+ 20 + 1),

which implies, since u?,v? € k C k(7) and char(k) # 2, that

u:l(Vz—v2—1> € k(v).

2 \u2

Then v + 1 € k(y) as well, so that u = y(v+1)~! € k() and we are done. Notice
that it makes sense to quotient by u and v + 1 because they cannot be zero as
they lie outside k.

2. 1. Prove that if [K : k| = 2, then k£ C K is a normal extension.
2. Show that Q(+v/2,7)/Q is normal.
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3. Show that Q(+v/2(1 4 14))/Q is not normal over Q.

4. Deduce that given a tower L/K/k of field extensions, L/k needs not to be normal
even if L/K and K/k are normal.

Solution:

1. Since [K : k] = 2, there is an element { € K \ k. Then k(§)/k is a proper
intermediate extension of K/k, and the only possibility is that K = k(§), so
that ¢ has a degree-2 minimal polynomial f(X) = X2 — sX +t € k[X]. Then
s—¢€k() =K and

fls—&) =5>—2s6+E2 -2+ 564+t =—sE+E2+t = f(£) =0.

Hence K is the splitting field of f, implying that K/k is a normal extension.

2. Let us prove that Q(+v/2,4) is the splitting field of the polynomial X* — 2 €
Q[X] (which is irreducible by Eisenstein’s criterion). This is quite straight-
forward: this splitting field must contain all the roots of the polynomials, i.e.
v/2,iv/2, —v/2, —iv/2, implying that it must contain 2\4/5/\4/5 = 1, so that it must
contain Q(sqrt[4]2,7). Clearly all the roots of X* — 2 lie Q(+v/2,i) which is then
the splitting field of X* — 2, so that it is a normal extension of @.

3. Sincei € R 2 Q(v/2) satisfies the polynomial X241 € Q(+/2), we have [Q(V/2, 1) :
Q(v/2)] = 2. Moreover, [Q(v?2) : Q] = 4 (as X* — 2 is irreducible by Eisenstein’s
criterion), so that

[Q(V2.4): Q] =s.
Let v = v/2(1 +4). It is enough to prove that the minimal polynomial of v over
@ does not split in Q(y) to conclude that Q(v)/Q is not a normal extension.

Notice that 72 = v/2(1 — 1 + 2i), so that y* = —8, and ~ satisfies the polynomial
g(X) = X* +8 € Q[X]. Hence [Q(7y) : Q] < 4. On the other hand,

QV2,1) = Q(V2(1 +1),i) = Q()(3),
with [Q(v/2,17) : Q(v)] < 2 since 7 satisfies X2 + 1 € Q(7)[X]. Then

8 =[Q(V2,i): Q] = [R(M)(i) : QMI[RQM) : Q],

and the only possibility is that [Q(7)(i) : Q(7)] = 2 and [Q(y) : Q] = 4. In
particular, g(X) is the minimal polynomial of v over @, and i ¢ Q(y). But the

roots of g(X) are easily seen to be uy, for u € {£1,+i}, so that the root iy of g
does not lie in Q(7) (as i € Q(7)).

4. Let k= Q, L = Q(y) and K = Q(v?). Then 4% = 2v/2i ¢ Q) satisfies the degree-2
polynomial Y2 + 8 € Q[Y], so that [K : k] = 2. Since [L : k] = 4, we have
[L: K] = 2. Then by point 1 the extensions L/K and K/k are normal, while L/k
is not by previous point.

3. Let K be a field, and L = K(X) its field of rational functions.
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1. Show that, for any A = < Z b > € GLy(K), the map

d

oath) =1 ()

cX +d

defines a K-automorphism of L, and we obtain a group homomorphism
i:GLy(K) — Aut(L/K).

2. Compute ker(1).

3. For f € K(X), write f = %, with p(X), ¢(X) € K[X] coprime polynomials.
Prove that p(X) — ¢(X)Y is an irreducible polynomial in K[X,Y], and deduce
that X is algebraic of degree max{deg(p),deg(q)} over K(f).

4. Conclude that i is surjective [Hint: For o € Aut(L/K), apply previous point with
f=aX)].
5. Is an endomorphism of the field K (X) which fixes K always an automorphism?

Solution:

1. Since o4 operates on f € K(X) just by substituting X with o4(X), it is clear that
04 is a field endomorphism fixing K. Define the map ¢ : GLa(K) — Endg (L)
sending A — o 4. If we prove that it is a map of monoids (i.e., it respects multi-
plication), then its image will clearly lie in the submonoid of invertible elements
of the codomain Aut(L/K) C Endk (L) because the domain is a group (explicitly,
o4 will have inverse o 4-1).

We are then only left to prove that c4p = c40p. Notice that we can write,
for f € L = K(X), the equality ca(f(X)) = f(ca(X)) because o4 is a field
homomorphism. Then

(0408)(f(X)) = oalos(f(X))) = oalos(f(X))) = f(oaop(X)),

so that we only need to prove that o4p(X) = o40p(X). This just an easy
computation, which was already done (for K = R) in Algebra I (HS14), Exercise
sheet 2, Exercise 4. Hence i is multiplicative.

2. The kernel of i consists of matrix A such that o4(f) = f for every f € K(X).

Since o4 is a K-automorphism of L = K(X), this condition is equivalent to

oa(X) =X, ie, ?ﬁg = X, which is equivalent to aX +b = cX?+dX,ie. a=d

and ¢ = b = 0. Hence
) 0
ker(z):{< 8 a > GGLQ(K)}.

3. As K is a field, K[X] is an integral domain, so that for ¢t,u € K[X,Y] we have
degy (tu) = degy (t) + degy (u), and each decomposition of r(X,Y) = p(X) +
Yq(X) is of the type 7(X,Y) = t(X)u(X,Y), with w(X,Y) = ug(X) + Yui (X).
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Then t(X) needs to be a common factor of p(X) and ¢(X), which are coprime, so
that ¢(X) is constant. This proves that 7(X,Y) = p(X) 4+ Y¢q(X) is irreducible in
K[X,Y].

We now prove that (X, Y) is also irreducible in K (Y')[X]: suppose that K[X,Y] 3
r(X,Y) = m(X,Y)r(X,Y), with 7(X,Y) € K(Y)[X]. Then we can write
ri(X,Y) = %si, with s; € K[Y][X] a primitive polynomial in X, that is, a poly-
nomial in X whose coefficients are coprime polynomials in Y, and R;(Y) € K[Y].
It is easily seen that the product of two primitive polynomials is again primi-
tive, so that from r(X,Y) € K[X,Y] we get that R;(Y) and Ra(Y') are constant

polynomials, and the factorization of r is a factorization in K[X,Y].

Now X is a root of the irreducible polynomial s(T') := r(T, f) € K(f)[T], so that
[K(X): K(f)] = deg(s) = max{deg(p),deg(q)} as desired.

4. For every o € Aut(L/K) and f € L, we have
o(f(X)) = f(o(X)),

so that we just need to prove that o(X) is a quotient of degree-1 polynomials.
Clearly, the image of L via o is K(o(X)), and we have seen in the previous point
that K(o(X)) is a subfield of K(X). Then surjectivity of o is attained only when
max{deg(p), deg(q)} = 1, so that any K-automorphism of L comes is of the form
o4 for some A € GLy(K). In conclusion, i is surjective.

5. No. Indeed, one can send X — X? to define a K-endomorphism 7 of L. Then
the image K (X?) of this field endomorphism is a subfield of K(X), and [K(X?) :
K (X)] = 2 by what we have seen in the previous points, so that 7 is not surjective.

1. Let K be field containing 3. Show that any automorphism of K is a QQ-automorphism.

2. From now on, let ¢ : R — R be a field automorphism. Show that ¢ is increasing;:
r<y=o(zx) <o(y).

3. Deduce that o is continuous.
4. Deduce that o = IdR.

Solution:

1. Let 0 : K — K a field automorphism, and suppose that Q@ C K. Then Z C K,
and for every n € Z one has o(n) = o(n-1) = no(1), by writing n as a sum of
1’s or —1’s and using additivity of o. Hence o|z = Idz. Now suppose f € @,
and write f = mn~! with n € Z. Then by multiplicativity of o we obtain
o(f) =o(m)o(n™') =mn~! = f, so that 0| = Idg and o is a Q-isomorphism.

2. Let z,y € R such that x <y. Then y —z > 0, so that there exist z € R such that
y—x = 22. Then

o(y) — o(a) = oy — v) = 0(2%) = o(2)? > 0,

so that o(y) > o(x) and o is increasing.
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3. To prove continuity, it is enough to check that counterimages of intervals are open.
For I = (a,b) C R an interval with a # b, by surjectivity of o there exist o, 5 € R
such that o(a) = a and o(8) = b, and since o is injective and increasing we need
a<fB. Theno () ={zeR:a<o(x) <bl={reR:ola) <o)<
o(B)} = (a, ), which is an open interval in R. Hence o is continuous.

4. Now o is continuous and so is Idg. By point 1, those two maps coincide on @Q,
which is a dense subset of R. Then they must coincide on the whole R, so that
o = Idg.



