Solutions of exercise sheet 2

1. Let k be a field with $\operatorname{char}(k) \neq 2$.
2. Let $a, b \in k$ be such that a is a square in $k(\beta)$, where β is an element algebraic over k such that $\beta^{2}=b$. Prove that either a or $a b$ is a square in k. [Hint: Distinguish the cases $\beta \in k$ and $\beta \notin k$. For the second case, expand $(c+d \beta)^{2}$, for $c, d \in k$.]
3. Now consider $K=k(u, v)$, where $u, v \notin k$ are elements in an algebraic extension of k such that $u^{2}, v^{2} \in k$. Set $\gamma=u(v+1)$. Prove: $K=k(\gamma)$.

Solution:

1. If $\beta \in k$, then $k(\beta)=k$, so that a is a square in k. Else, β is algebraic of order 2 over k, and any element in $k(\beta)$ can be expressed as $c+d \beta$, with $c, d \in k$. In particular, for some c and d in k we have

$$
a=(c+d \beta)^{2}=\left(c^{2}+b d^{2}\right)+2 c d \beta
$$

which gives, since 1 and β are two k-linear independent elements,

$$
a=c^{2}+b d^{2}, 2 c d=0
$$

Then, since $\operatorname{char}(k) \neq 2$, we get $c d=0$, implying that $c=0$ or $d=0$. If $d=0$, then $a=c^{2}$ is a square in k. Else $c=0$, and $a=b d^{2}$, so that $a b=b^{2} d^{2}=(b d)^{2}$ is a square in k.
2. The inclusion $K \supseteq k(\gamma)$ is clear, since $\gamma=u(v+1) \in k(u, v)=K$. To prove the other inclusion, we need to show that $u, v \in k(\gamma)$. We have

$$
k(\gamma) \ni \gamma^{2}=u^{2}\left(v^{2}+2 v+1\right)
$$

which implies, since $u^{2}, v^{2} \in k \subseteq k(\gamma)$ and $\operatorname{char}(k) \neq 2$, that

$$
v=\frac{1}{2}\left(\frac{\gamma^{2}}{u^{2}}-v^{2}-1\right) \in k(\gamma) .
$$

Then $v+1 \in k(\gamma)$ as well, so that $u=\gamma(v+1)^{-1} \in k(\gamma)$ and we are done. Notice that it makes sense to quotient by u and $v+1$ because they cannot be zero as they lie outside k.
2. 1. Prove that if $[K: k]=2$, then $k \subseteq K$ is a normal extension.
2. Show that $\mathbb{Q}(\sqrt[4]{2}, i) / \mathbb{Q}$ is normal.
3. Show that $\mathbb{Q}(\sqrt[4]{2}(1+i)) / \mathbb{Q}$ is not normal over \mathbb{Q}.
4. Deduce that given a tower $L / K / k$ of field extensions, L / k needs not to be normal even if L / K and K / k are normal.

Solution:

1. Since $[K: k]=2$, there is an element $\xi \in K \backslash k$. Then $k(\xi) / k$ is a proper intermediate extension of K / k, and the only possibility is that $K=k(\xi)$, so that ξ has a degree-2 minimal polynomial $f(X)=X^{2}-s X+t \in k[X]$. Then $s-\xi \in k(\xi)=K$ and

$$
f(s-\xi)=s^{2}-2 s \xi+\xi^{2}-s^{2}+s \xi+t=-s \xi+\xi^{2}+t=f(\xi)=0 .
$$

Hence K is the splitting field of f, implying that K / k is a normal extension.
2. Let us prove that $\mathbb{Q}(\sqrt[4]{2}, i)$ is the splitting field of the polynomial $X^{4}-2 \in$ $\mathbb{Q}[X]$ (which is irreducible by Eisenstein's criterion). This is quite straightforward: this splitting field must contain all the roots of the polynomials, i.e. $\sqrt[4]{2}, i \sqrt[4]{2},-\sqrt[4]{2},-i \sqrt[4]{2}$, implying that it must contain $i \sqrt[4]{2} / \sqrt[4]{2}=i$, so that it must contain $\mathbb{Q}(\operatorname{sqrt}[4] 2, i)$. Clearly all the roots of $X^{4}-2$ lie $\mathbb{Q}(\sqrt[4]{2}, i)$ which is then the splitting field of $X^{4}-2$, so that it is a normal extension of \mathbb{Q}.
3. Since $i \notin \mathbb{R} \supseteq \mathbb{Q}(\sqrt[4]{2})$ satisfies the polynomial $X^{2}+1 \in \mathbb{Q}(\sqrt[4]{2})$, we have $[\mathbb{Q}(\sqrt[4]{2}, i)$: $\mathbb{Q}(\sqrt[4]{2})]=2$. Moreover, $[\mathbb{Q}(\sqrt[4]{2}): \mathbb{Q}]=4$ (as $X^{4}-2$ is irreducible by Eisenstein's criterion), so that

$$
[\mathbb{Q}(\sqrt[4]{2}, i): \mathbb{Q}]=8 .
$$

Let $\gamma=\sqrt[4]{2}(1+i)$. It is enough to prove that the minimal polynomial of γ over \mathbb{Q} does not split in $\mathbb{Q}(\gamma)$ to conclude that $\mathbb{Q}(\gamma) / \mathbb{Q}$ is not a normal extension.
Notice that $\gamma^{2}=\sqrt{2}(1-1+2 i)$, so that $\gamma^{4}=-8$, and γ satisfies the polynomial $g(X)=X^{4}+8 \in \mathbb{Q}[X]$. Hence $[\mathbb{Q}(\gamma): \mathbb{Q}] \leq 4$. On the other hand,

$$
\mathbb{Q}(\sqrt[4]{2}, i)=\mathbb{Q}(\sqrt[4]{2}(1+i), i)=\mathbb{Q}(\gamma)(i),
$$

with $[\mathbb{Q}(\sqrt[4]{2}, i): \mathbb{Q}(\gamma)] \leq 2$ since i satisfies $X^{2}+1 \in \mathbb{Q}(\gamma)[X]$. Then

$$
8=[\mathbb{Q}(\sqrt[4]{2}, i): \mathbb{Q}]=[\mathbb{Q}(\gamma)(i): \mathbb{Q}(\gamma)][\mathbb{Q}(\gamma): \mathbb{Q}],
$$

and the only possibility is that $[\mathbb{Q}(\gamma)(i): \mathbb{Q}(\gamma)]=2$ and $[\mathbb{Q}(\gamma): \mathbb{Q}]=4$. In particular, $g(X)$ is the minimal polynomial of γ over \mathbb{Q}, and $i \notin \mathbb{Q}(\gamma)$. But the roots of $g(X)$ are easily seen to be $u \gamma$, for $u \in\{ \pm 1, \pm i\}$, so that the root $i \gamma$ of g does not lie in $\mathbb{Q}(\gamma)$ (as $i \notin \mathbb{Q}(\gamma))$.
4. Let $k=\mathbb{Q}, L=\mathbb{Q}(\gamma)$ and $K=\mathbb{Q}\left(\gamma^{2}\right)$. Then $\gamma^{2}=2 \sqrt{2} i \notin \mathbb{Q}$ satisfies the degree-2 polynomial $Y^{2}+8 \in \mathbb{Q}[Y]$, so that $[K: k]=2$. Since $[L: k]=4$, we have $[L: K]=2$. Then by point 1 the extensions L / K and K / k are normal, while L / k is not by previous point.
3. Let K be a field, and $L=K(X)$ its field of rational functions.

1. Show that, for any $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{GL}_{2}(K)$, the map

$$
\sigma_{A}(f)=f\left(\frac{a X+b}{c X+d}\right)
$$

defines a K-automorphism of L, and we obtain a group homomorphism

$$
i: \mathrm{GL}_{2}(K) \longrightarrow \operatorname{Aut}(L / K)
$$

2. Compute $\operatorname{ker}(i)$.
3. For $f \in K(X)$, write $f=\frac{p(X)}{q(X)}$, with $p(X), q(X) \in K[X]$ coprime polynomials. Prove that $p(X)-q(X) Y$ is an irreducible polynomial in $K[X, Y]$, and deduce that X is algebraic of degree $\max \{\operatorname{deg}(p), \operatorname{deg}(q)\}$ over $K(f)$.
4. Conclude that i is surjective [Hint: For $\sigma \in \operatorname{Aut}(L / K)$, apply previous point with $f=\sigma(X)]$.
5. Is an endomorphism of the field $K(X)$ which fixes K always an automorphism?

Solution:

1. Since σ_{A} operates on $f \in K(X)$ just by substituting X with $\sigma_{A}(X)$, it is clear that σ_{A} is a field endomorphism fixing K. Define the map $i: \mathrm{GL}_{2}(K) \longrightarrow \operatorname{End}_{K}(L)$ sending $A \mapsto \sigma_{A}$. If we prove that it is a map of monoids (i.e., it respects multiplication), then its image will clearly lie in the submonoid of invertible elements of the codomain $\operatorname{Aut}(L / K) \subseteq E n d_{K}(L)$ because the domain is a group (explicitly, σ_{A} will have inverse $\sigma_{A^{-1}}$).
We are then only left to prove that $\sigma_{A B}=\sigma_{A} \sigma_{B}$. Notice that we can write, for $f \in L=K(X)$, the equality $\sigma_{A}(f(X))=f\left(\sigma_{A}(X)\right)$ because σ_{A} is a field homomorphism. Then

$$
\left(\sigma_{A} \sigma_{B}\right)(f(X))=\sigma_{A}\left(\sigma_{B}(f(X))\right)=\sigma_{A}\left(\sigma_{B}(f(X))\right)=f\left(\sigma_{A} \sigma_{B}(X)\right)
$$

so that we only need to prove that $\sigma_{A B}(X)=\sigma_{A} \sigma_{B}(X)$. This just an easy computation, which was already done (for $K=\mathbb{R}$) in Algebra I (HS14), Exercise sheet 2, Exercise 4. Hence i is multiplicative.
2. The kernel of i consists of matrix A such that $\sigma_{A}(f)=f$ for every $f \in K(X)$. Since σ_{A} is a K-automorphism of $L=K(X)$, this condition is equivalent to $\sigma_{A}(X)=X$, i.e., $\frac{a X+b}{c X+d}=X$, which is equivalent to $a X+b=c X^{2}+d X$, i.e. $a=d$ and $c=b=0$. Hence

$$
\operatorname{ker}(i)=\left\{\left(\begin{array}{cc}
a & 0 \\
0 & a
\end{array}\right) \in \mathrm{GL}_{2}(K)\right\} .
$$

3. As K is a field, $K[X]$ is an integral domain, so that for $t, u \in K[X, Y]$ we have $\operatorname{deg}_{Y}(t u)=\operatorname{deg}_{Y}(t)+\operatorname{deg}_{Y}(u)$, and each decomposition of $r(X, Y)=p(X)+$ $Y q(X)$ is of the type $r(X, Y)=t(X) u(X, Y)$, with $u(X, Y)=u_{0}(X)+Y u_{1}(X)$.

Then $t(X)$ needs to be a common factor of $p(X)$ and $q(X)$, which are coprime, so that $t(X)$ is constant. This proves that $r(X, Y)=p(X)+Y q(X)$ is irreducible in $K[X, Y]$.
We now prove that $r(X, Y)$ is also irreducible in $K(Y)[X]$: suppose that $K[X, Y] \ni$ $r(X, Y)=r_{1}(X, Y) r_{2}(X, Y)$, with $r_{i}(X, Y) \in K(Y)[X]$. Then we can write $r_{i}(X, Y)=\frac{1}{R_{i}(Y)} s_{i}$, with $s_{i} \in K[Y][X]$ a primitive polynomial in X, that is, a polynomial in X whose coefficients are coprime polynomials in Y, and $R_{i}(Y) \in K[Y]$. It is easily seen that the product of two primitive polynomials is again primitive, so that from $r(X, Y) \in K[X, Y]$ we get that $R_{1}(Y)$ and $R_{2}(Y)$ are constant polynomials, and the factorization of r is a factorization in $K[X, Y]$.
Now X is a root of the irreducible polynomial $s(T):=r(T, f) \in K(f)[T]$, so that $[K(X): K(f)]=\operatorname{deg}(s)=\max \{\operatorname{deg}(p), \operatorname{deg}(q)\}$ as desired.
4. For every $\sigma \in \operatorname{Aut}(L / K)$ and $f \in L$, we have

$$
\sigma(f(X))=f(\sigma(X))
$$

so that we just need to prove that $\sigma(X)$ is a quotient of degree- 1 polynomials. Clearly, the image of L via σ is $K(\sigma(X))$, and we have seen in the previous point that $K(\sigma(X))$ is a subfield of $K(X)$. Then surjectivity of σ is attained only when $\max \{\operatorname{deg}(p), \operatorname{deg}(q)\}=1$, so that any K-automorphism of L comes is of the form σ_{A} for some $A \in \mathrm{GL}_{2}(K)$. In conclusion, i is surjective.
5. No. Indeed, one can send $X \mapsto X^{2}$ to define a K-endomorphism τ of L. Then the image $K\left(X^{2}\right)$ of this field endomorphism is a subfield of $K(X)$, and $\left[K\left(X^{2}\right)\right.$: $K(X)]=2$ by what we have seen in the previous points, so that τ is not surjective.
4. 1. Let K be field containing \mathbb{Q}. Show that any automorphism of K is a \mathbb{Q}-automorphism.
2. From now on, let $\sigma: \mathbb{R} \longrightarrow \mathbb{R}$ be a field automorphism. Show that σ is increasing:

$$
x \leq y \Longrightarrow \sigma(x) \leq \sigma(y)
$$

3. Deduce that σ is continuous.
4. Deduce that $\sigma=\operatorname{Id}_{\mathbb{R}}$.

Solution:

1. Let $\sigma: K \longrightarrow K$ a field automorphism, and suppose that $\mathbb{Q} \subseteq K$. Then $\mathbb{Z} \subseteq K$, and for every $n \in \mathbb{Z}$ one has $\sigma(n)=\sigma(n \cdot 1)=n \sigma(1)$, by writing n as a sum of 1 's or -1 's and using additivity of σ. Hence $\left.\sigma\right|_{\mathbb{Z}}=\operatorname{Id}_{\mathbb{Z}}$. Now suppose $f \in \mathbb{Q}$, and write $f=m n^{-1}$ with $n \in \mathbb{Z}$. Then by multiplicativity of σ we obtain $\sigma(f)=\sigma(m) \sigma\left(n^{-1}\right)=m n^{-1}=f$, so that $\left.\sigma\right|_{\mathbb{Q}}=\operatorname{Id}_{\mathbb{Q}}$ and σ is a \mathbb{Q}-isomorphism.
2. Let $x, y \in \mathbb{R}$ such that $x \leq y$. Then $y-x \geq 0$, so that there exist $z \in \mathbb{R}$ such that $y-x=z^{2}$. Then

$$
\sigma(y)-\sigma(x)=\sigma(y-x)=\sigma\left(z^{2}\right)=\sigma(z)^{2} \geq 0,
$$

so that $\sigma(y) \geq \sigma(x)$ and σ is increasing.
3. To prove continuity, it is enough to check that counterimages of intervals are open. For $I=(a, b) \subseteq \mathbb{R}$ an interval with $a \neq b$, by surjectivity of σ there exist $\alpha, \beta \in \mathbb{R}$ such that $\sigma(\alpha)=a$ and $\sigma(\beta)=b$, and since σ is injective and increasing we need $\alpha<\beta$. Then $\sigma^{-1}(I)=\{x \in \mathbb{R}: a<\sigma(x)<b\}=\{x \in \mathbb{R}: \sigma(\alpha)<\sigma(x)<$ $\sigma(\beta)\}=(\alpha, \beta)$, which is an open interval in \mathbb{R}. Hence σ is continuous.
4. Now σ is continuous and so is $\operatorname{Id}_{\mathbb{R}}$. By point 1 , those two maps coincide on \mathbb{Q}, which is a dense subset of \mathbb{R}. Then they must coincide on the whole \mathbb{R}, so that $\sigma=\operatorname{Id}_{\mathbb{R}}$.

