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Prof. Emmanuel Kowalski

Solutions of exercise sheet 2

1. Let k be a field with char(k) 6= 2.

1. Let a, b ∈ k be such that a is a square in k(β), where β is an element algebraic over
k such that β2 = b. Prove that either a or ab is a square in k. [Hint: Distinguish
the cases β ∈ k and β 6∈ k. For the second case, expand (c+ dβ)2, for c, d ∈ k.]

2. Now consider K = k(u, v), where u, v 6∈ k are elements in an algebraic extension
of k such that u2, v2 ∈ k. Set γ = u(v + 1). Prove: K = k(γ).

Solution:

1. If β ∈ k, then k(β) = k, so that a is a square in k. Else, β is algebraic of order
2 over k, and any element in k(β) can be expressed as c + dβ, with c, d ∈ k. In
particular, for some c and d in k we have

a = (c+ dβ)2 = (c2 + bd2) + 2cdβ,

which gives, since 1 and β are two k-linear independent elements,

a = c2 + bd2, 2cd = 0.

Then, since char(k) 6= 2, we get cd = 0, implying that c = 0 or d = 0. If d = 0,
then a = c2 is a square in k. Else c = 0, and a = bd2, so that ab = b2d2 = (bd)2 is
a square in k.

2. The inclusion K ⊇ k(γ) is clear, since γ = u(v + 1) ∈ k(u, v) = K. To prove the
other inclusion, we need to show that u, v ∈ k(γ). We have

k(γ) 3 γ2 = u2(v2 + 2v + 1),

which implies, since u2, v2 ∈ k ⊆ k(γ) and char(k) 6= 2, that

v =
1

2

(
γ2

u2
− v2 − 1

)
∈ k(γ).

Then v+ 1 ∈ k(γ) as well, so that u = γ(v+ 1)−1 ∈ k(γ) and we are done. Notice
that it makes sense to quotient by u and v + 1 because they cannot be zero as
they lie outside k.

2. 1. Prove that if [K : k] = 2, then k ⊆ K is a normal extension.

2. Show that Q( 4
√

2, i)/Q is normal.
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3. Show that Q( 4
√

2(1 + i))/Q is not normal over Q.

4. Deduce that given a tower L/K/k of field extensions, L/k needs not to be normal
even if L/K and K/k are normal.

Solution:

1. Since [K : k] = 2, there is an element ξ ∈ K \ k. Then k(ξ)/k is a proper
intermediate extension of K/k, and the only possibility is that K = k(ξ), so
that ξ has a degree-2 minimal polynomial f(X) = X2 − sX + t ∈ k[X]. Then
s− ξ ∈ k(ξ) = K and

f(s− ξ) = s2 − 2sξ + ξ2 − s2 + sξ + t = −sξ + ξ2 + t = f(ξ) = 0.

Hence K is the splitting field of f , implying that K/k is a normal extension.

2. Let us prove that Q( 4
√

2, i) is the splitting field of the polynomial X4 − 2 ∈
Q[X] (which is irreducible by Eisenstein’s criterion). This is quite straight-
forward: this splitting field must contain all the roots of the polynomials, i.e.
4
√

2, i 4
√

2,− 4
√

2,−i 4
√

2, implying that it must contain i 4
√

2/ 4
√

2 = i, so that it must
contain Q(sqrt[4]2, i). Clearly all the roots of X4 − 2 lie Q( 4

√
2, i) which is then

the splitting field of X4 − 2, so that it is a normal extension of Q.

3. Since i 6∈ R ⊇ Q( 4
√

2) satisfies the polynomialX2+1 ∈ Q( 4
√

2), we have [Q( 4
√

2, i) :
Q( 4
√

2)] = 2. Moreover, [Q( 4
√

2) : Q] = 4 (as X4 − 2 is irreducible by Eisenstein’s
criterion), so that

[Q(
4
√

2, i) : Q] = 8.

Let γ = 4
√

2(1 + i). It is enough to prove that the minimal polynomial of γ over
Q does not split in Q(γ) to conclude that Q(γ)/Q is not a normal extension.

Notice that γ2 =
√

2(1− 1 + 2i), so that γ4 = −8, and γ satisfies the polynomial
g(X) = X4 + 8 ∈ Q[X]. Hence [Q(γ) : Q] ≤ 4. On the other hand,

Q(
4
√

2, i) = Q(
4
√

2(1 + i), i) = Q(γ)(i),

with [Q( 4
√

2, i) : Q(γ)] ≤ 2 since i satisfies X2 + 1 ∈ Q(γ)[X]. Then

8 = [Q(
4
√

2, i) : Q] = [Q(γ)(i) : Q(γ)][Q(γ) : Q],

and the only possibility is that [Q(γ)(i) : Q(γ)] = 2 and [Q(γ) : Q] = 4. In
particular, g(X) is the minimal polynomial of γ over Q, and i 6∈ Q(γ). But the
roots of g(X) are easily seen to be uγ, for u ∈ {±1,±i}, so that the root iγ of g
does not lie in Q(γ) (as i 6∈ Q(γ)).

4. Let k = Q, L = Q(γ) and K = Q(γ2). Then γ2 = 2
√

2i 6∈ Q satisfies the degree-2
polynomial Y 2 + 8 ∈ Q[Y ], so that [K : k] = 2. Since [L : k] = 4, we have
[L : K] = 2. Then by point 1 the extensions L/K and K/k are normal, while L/k
is not by previous point.

3. Let K be a field, and L = K(X) its field of rational functions.

See next page!



1. Show that, for any A =

(
a b
c d

)
∈ GL2(K), the map

σA(f) = f

(
aX + b

cX + d

)
defines a K-automorphism of L, and we obtain a group homomorphism

i : GL2(K) −→ Aut(L/K).

2. Compute ker(i).

3. For f ∈ K(X), write f = p(X)
q(X) , with p(X), q(X) ∈ K[X] coprime polynomials.

Prove that p(X) − q(X)Y is an irreducible polynomial in K[X,Y ], and deduce
that X is algebraic of degree max{deg(p),deg(q)} over K(f).

4. Conclude that i is surjective [Hint: For σ ∈ Aut(L/K), apply previous point with
f = σ(X)].

5. Is an endomorphism of the field K(X) which fixes K always an automorphism?

Solution:

1. Since σA operates on f ∈ K(X) just by substituting X with σA(X), it is clear that
σA is a field endomorphism fixing K. Define the map i : GL2(K) −→ EndK(L)
sending A 7→ σA. If we prove that it is a map of monoids (i.e., it respects multi-
plication), then its image will clearly lie in the submonoid of invertible elements
of the codomain Aut(L/K) ⊆ EndK(L) because the domain is a group (explicitly,
σA will have inverse σA−1).

We are then only left to prove that σAB = σAσB. Notice that we can write,
for f ∈ L = K(X), the equality σA(f(X)) = f(σA(X)) because σA is a field
homomorphism. Then

(σAσB)(f(X)) = σA(σB(f(X))) = σA(σB(f(X))) = f(σAσB(X)),

so that we only need to prove that σAB(X) = σAσB(X). This just an easy
computation, which was already done (for K = R) in Algebra I (HS14), Exercise
sheet 2, Exercise 4. Hence i is multiplicative.

2. The kernel of i consists of matrix A such that σA(f) = f for every f ∈ K(X).
Since σA is a K-automorphism of L = K(X), this condition is equivalent to
σA(X) = X, i.e., aX+b

cX+d = X, which is equivalent to aX+ b = cX2 +dX, i.e. a = d
and c = b = 0. Hence

ker(i) =

{(
a 0
0 a

)
∈ GL2(K)

}
.

3. As K is a field, K[X] is an integral domain, so that for t, u ∈ K[X,Y ] we have
degY (tu) = degY (t) + degY (u), and each decomposition of r(X,Y ) = p(X) +
Y q(X) is of the type r(X,Y ) = t(X)u(X,Y ), with u(X,Y ) = u0(X) + Y u1(X).
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Then t(X) needs to be a common factor of p(X) and q(X), which are coprime, so
that t(X) is constant. This proves that r(X,Y ) = p(X) + Y q(X) is irreducible in
K[X,Y ].

We now prove that r(X,Y ) is also irreducible in K(Y )[X]: suppose that K[X,Y ] 3
r(X,Y ) = r1(X,Y )r2(X,Y ), with ri(X,Y ) ∈ K(Y )[X]. Then we can write
ri(X,Y ) = 1

Ri(Y )si, with si ∈ K[Y ][X] a primitive polynomial in X, that is, a poly-

nomial in X whose coefficients are coprime polynomials in Y , and Ri(Y ) ∈ K[Y ].
It is easily seen that the product of two primitive polynomials is again primi-
tive, so that from r(X,Y ) ∈ K[X,Y ] we get that R1(Y ) and R2(Y ) are constant
polynomials, and the factorization of r is a factorization in K[X,Y ].

Now X is a root of the irreducible polynomial s(T ) := r(T, f) ∈ K(f)[T ], so that
[K(X) : K(f)] = deg(s) = max{deg(p),deg(q)} as desired.

4. For every σ ∈ Aut(L/K) and f ∈ L, we have

σ(f(X)) = f(σ(X)),

so that we just need to prove that σ(X) is a quotient of degree-1 polynomials.
Clearly, the image of L via σ is K(σ(X)), and we have seen in the previous point
that K(σ(X)) is a subfield of K(X). Then surjectivity of σ is attained only when
max{deg(p), deg(q)} = 1, so that any K-automorphism of L comes is of the form
σA for some A ∈ GL2(K). In conclusion, i is surjective.

5. No. Indeed, one can send X 7→ X2 to define a K-endomorphism τ of L. Then
the image K(X2) of this field endomorphism is a subfield of K(X), and [K(X2) :
K(X)] = 2 by what we have seen in the previous points, so that τ is not surjective.

4. 1. LetK be field containingQ. Show that any automorphism ofK is aQ-automorphism.

2. From now on, let σ : R −→ R be a field automorphism. Show that σ is increasing:

x ≤ y =⇒ σ(x) ≤ σ(y).

3. Deduce that σ is continuous.

4. Deduce that σ = IdR.

Solution:

1. Let σ : K −→ K a field automorphism, and suppose that Q ⊆ K. Then Z ⊆ K,
and for every n ∈ Z one has σ(n) = σ(n · 1) = nσ(1), by writing n as a sum of
1’s or −1’s and using additivity of σ. Hence σ|Z = IdZ. Now suppose f ∈ Q,
and write f = mn−1 with n ∈ Z. Then by multiplicativity of σ we obtain
σ(f) = σ(m)σ(n−1) = mn−1 = f , so that σ|Q = IdQ and σ is a Q-isomorphism.

2. Let x, y ∈ R such that x ≤ y. Then y−x ≥ 0, so that there exist z ∈ R such that
y − x = z2. Then

σ(y)− σ(x) = σ(y − x) = σ(z2) = σ(z)2 ≥ 0,

so that σ(y) ≥ σ(x) and σ is increasing.
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3. To prove continuity, it is enough to check that counterimages of intervals are open.
For I = (a, b) ⊆ R an interval with a 6= b, by surjectivity of σ there exist α, β ∈ R
such that σ(α) = a and σ(β) = b, and since σ is injective and increasing we need
α < β. Then σ−1(I) = {x ∈ R : a < σ(x) < b} = {x ∈ R : σ(α) < σ(x) <
σ(β)} = (α, β), which is an open interval in R. Hence σ is continuous.

4. Now σ is continuous and so is IdR. By point 1, those two maps coincide on Q,
which is a dense subset of R. Then they must coincide on the whole R, so that
σ = IdR.


