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Solutions of exercise sheet 3

1. Let L/K be a Galois extension, and G = Gal(L/K). Fix x ∈ L and let f(X) =
Irr(x,K)(X). Show that we have the following equality of subsets in L:

{σ(x)|σ ∈ G} = {α ∈ L : f(α) = 0}.

Solution: Let Sx := {α ∈ L : f(α) = 0} be the set of roots of x’s minimal polynomial.
Then for σ ∈ G and α ∈ Sx we get, writing f(X) =

∑l
i=0 aiX

i and using that σ is a
field endomorphism fixing K,

f(σ(α)) =

l∑
i=0

aiσ(α)i =

l∑
i=0

σ(ai)σ(αi) = σ

(
l∑

i=0

aiα
i

)
= σ(f(α)) = σ(0) = 0,

so that σ(α) ∈ Sx as well. This means that the action of G on L restricts to an action
on the set Sx. The orbit of x ∈ Sx via this action is O(x) := {σ(x)|σ ∈ G}, so that
the result will follow immediately if we prove that the action of G on Sx is transitive.

This transitivity is equivalent to check that σ(x) attains all the roots of f for σ varying
in G. For α ∈ Sx, the association x 7→ α gives an embedding K(x) 7→ K̄, which as
seen in class extends to an embedding L 7→ K̄, which gives an elements σ ∈ G such
that σ(x) = α.

2. Let L be a field, G ⊆ Aut(L) a finite subgroup of cardinality n, and consider the
subfield K = LG of L. Prove:

1. L/K is a finite extension of degree n [Hint: Exercise 1.9 from Exercise sheet 1].

2. L/K is Galois with group G.

Solution: Let x ∈ L. Then O(x) := {σ(x)|σ ∈ G} is the orbit of x under the action
of G on L, and |O(x)| ≤ |G| <∞. Notice that the polynomial

fx(Y ) =
∏

y∈O(x)

(Y − y)

has x as a root. Moreover, it is stable under the action of G on the ring L[Y ] (defined
by letting G act trivially on Y and imposing additivity and multiplicativity), since
each τ ∈ G restricts to a bijection of O(x), so that

τ · fx(Y ) =
∏

y∈O(x)

(Y − τ(y)) =
∏

y∈τ−1O(x)

(Y − y) =
∏

y∈O(x)

(Y − y) = fx(Y ).

Please turn over!



Looking at the coefficients of fx, this means that fx(Y ) ∈ LG[Y ] = K[X], so that x
satisfies a polynomial of degree smaller than |G| = n over K. This polynomial splits
completely in L and has distinct roots by construction (meaning that it is a separable
polynomial), so that L/K is a Galois extension by the arbitrarity of x ∈ L (Part 2.).

To conclude, notice that since the extension L/K is separable we are in position to
apply Exercise 1.9 from Exercise sheet 1 (which consisted of a true statement). Since
deg(fx) ≤ n for all x ∈ L, that statement tells us that L/K is finite and [L : K] ≤ n.
Now G ≤ AutKL by definition of K, so that

[L : K] ≤ n = |G| ≤ |AutKL| ≤ [L : K],

as seen in class. In conclusion, [L : K] = n (Part 1.).

3. Let L/K be a finite extension. Prove that L/K is Galois if and only if |AutK(L)| =
[L : K]. [You can apply the primitive element theorem]

Solution: Suppose that L/K is a finite Galois extension. Then we can apply the
primitive element theorem and write L = K(x) for some x ∈ L. By normality and
separability, the minimal polynomial of x has [L : K] roots, and then exercise 1 implies
that σ(x) attains [L : K] distinct values for σ(x) ∈ AutK(L), and since here σ is
uniquely determined by σ(x), we obtain |AutK(L)| = [L : K].

Conversely, suppose that |AutK(L)| = [L : K]. Then G := AutK(L) ⊆ Aut(L) is a
subgroup of cardinality [L : K], so that L/LG is a Galois extension of degree [L : K].
Since K ⊆ LG, the multiplicativity of the degree forces K = LG and we can conclude
that L/K is Galois.

4. Let K be an infinite field, and V a K-vector space over K. Prove that if V1, . . . , Vm
are vector subspaces in V such that Vi 6= V for all i, then

⋃m
i=1 6= V . [Hint: Induction

on n].

Solution: See Lemma 3.3.4 in Chambert-Loir, A field guide to algebra.

5. In this exercise, we will show how to prove the primitive element theorem using Galois
theory. This is useful because it is possible to prove the Galois correspondence without
the primitive element theorem, see Section 4.3 in Reid’s notes.

Let L/K be a finite separable field extension.

1. Prove that there exist only finitely many intermediate field extensions K ⊆ E ⊆ L.
[You can use the fact that L embeds in a Galois closure Lg, that is, a smallest
finite extension of L such that K ⊆ Lg is Galois]

2. Deduce that if K is an infinite field, then L = K(x) for some x ∈ L. [Hint:
Previous exercise]

See next page!



3. Suppose that K is finite. Prove that L = K(x) for some x ∈ L.

Solution:

1. Let Lg be a Galois closure of L with respect to K as in the hint. Then any
intermediate extension K ⊆ E ⊆ L is an intermediate extension K ⊆ E ⊆ Lg,
and those are in 1-1 correspondence with subgroups of Gal(Lg/K) by the Galois
correspondence. Since Lg is a finite extension of K, Gal(Lg/K) is finite and has
finitely many subgroups.

2. By previous point there are only finitely many primitive extensions of K, which
we call L1, . . . , Ln. Then L =

⋃
i Li because each element x ∈ L belongs to the

primitive extension K(x). Then by the previous exercise the only possibility is
that Li = L for some i, which means that L is itself primitive.

3. As seen in the first semester, the multiplicative group of a finite field is cyclic.
Since L is also a finite field (containing |K|[L:K] elements), there exists x ∈ L such
that L× = 〈x〉. Then L = K(x) as desired.


