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Solutions of exercise sheet 4

1. Let K be a field of characteristic 2, and fix an algebraic closure K̄ of K. Suppose L/K
is a Galois quadratic extension contained in K̄.

1. Show that there exists a ∈ K such that L = K(b) where b is a root of X2−X+a.

2. Prove that Gal(L/K) ∼= Z/2Z, and express the action of the generator of G on L
as a matrix with respect to the basis (1, b).

3. Suppose that for i = 1, 2 we have elements ai ∈ K and we consider the field
extensions Li = K(bi), where bi ∈ K̄ are roots of polynomials X2−X + ai, which
we suppose to be irreducible. Show that L1 = L2 if and only if there exists µ ∈ K
such that µ2 − µ = a2 − a1.

Solution:

1. Let b0 ∈ L \K and f(X) = X2 − sX + t its minimal polynomial over K. Let us
first notice that s 6= 0. Else, we would have b20 = −t, giving

f(X) = X2 + t = (X − b0)(X + b0) = (X − b0)2

since char(L) = char(K) = 2, so that f would not be separable and L/K would
not be Galois, contradiction.

Now b0 necessarily generates the whole L, and in order to find an element b
in L = K(b0) giving a minimal polynomial of the form X2 − X + a, we write
b = λb0 + µ for λ, µ ∈ K and require b2 − b ∈ K. This gives (using the fact that
the characteristic is 2):

K 3 λ2b20 + µ2 − λb0 − µ = λ2(sb0 − t) + µ2 − λb0 − µ,

which by K-linear independence of 1 and b0 is equivalent to λ2s− λ = 0. This is
true if and only if λ = 0 or λ = 1

s . The first possibility is not good because then b
would lie in K. So it is enough to choose b = x/s in order to obtain b2−b+ t

s2
= 0,

meaning that b is a root of the polynomial g(X) = X2 −X + a for a = t/s2 and
L = K(b).

2. Since Gal(L/K) = [L : K] = 2, the only possibility is that we have a cyclic Galois
group of order 2. It is generated by the non-trivial K-automorphism τ of L, which
sends b to another root of g. But it is clear that b + 1 is also a root of g(X), so
that τ(1) = 1, τ(b) = 1 + b, and

[τ ]{1,b} =

(
1 1
0 1

)
.

Please turn over!



3. First, notice that L1 and L2 are both quadratic extensions of K, so that they
coincide if and only if L1 ⊆ L2, if and only if b1 = λb2 +µ for some λ, µ ∈ K. This
condition is equivalent (eventually by translating µ by 1) to saying that there are
λ, µ ∈ K such that λb2 + µ is a root of X2 −X + a1. This in turns is equivalent
to saying that for some λ, µ ∈ K we have

0 = λ2b22 + µ2 − λb2 − µ+ a1 = λ2(b2 − a2)− λb2 + µ2 − µ+ a1,

where the second equality comes from the hypothesis on b2. By linear indepen-
dence of 1 and b2 we see that λ2 = λ, and the only possibility (as b1 6∈ K) is that
λ = 1.

This means that L1 = L2 if and only there exists µ ∈ K such that µ2−µ = a2−a1,
as desired.

2. Consider the polynomial f = X3 − 2 ∈ Q[X], and let L be the splitting field of f .

1. Prove that [L : Q] = 6, and find intermediate extensions L1 and L2 of L over Q
such that [L1 : Q] = 2 and [L2 : Q] = 3.

2. Prove that L/Q is a Galois extension with Galois group G = S3 [Hint: The Galois
group of L acts faithfully on the roots of f ].

3. Which of the four field extensions L/Li and Li/Q, for i = 1, 2 are Galois? Find
their Galois groups.

Solution:

1. Let ξ be a primitive third root of unity. Then we have a decomposition

f(X) = (X − 3
√

2)(X − ξ 3
√

2)(X − ξ2 3
√

2),

so that L = Q( 3
√

2, ξ). We have that L2 := Q( 3
√

2) is an intermediate field
extension of L with degree 3 over Q. Moreover, ξ 6∈ R ⊇ L2, so that L/L2 is non-
trivial. Notice that ξ satisfies the cyclotomic polynomial X2 + X + 1 ∈ Q[X] ⊆
L2[X], so that [L : L2] = 2 necessarily. This implies that [L : Q] = 6. We can also
consider L1 := Q(ξ) to get an intermediate field extension of degree 2 over Q as
required.

2. The Galois group G acts faithfully on the 3 roots of f , so that G ⊆ S3. But
|G| = [L : Q] = 6 = |S3|, so that we need G = S3.

3. The only non-Galois extension is L2/Q, because the minimal polynomial of 3
√

2
does not split in L2[X]. For the other extensions, separability is always clear,
and normality is immediate for L1/Q and L/L2 which have degree 2, while L/L1

is normal because there the minimal polynomial of 3
√

2 splits completely, and
L = L1(

3
√

2) by construction.

Since all groups of cardinality 2 and 3 are cyclic, we have Gal(L/L2) ∼= Gal(L1/Q) ∼=
Z/2Z and Gal(L/L1) ∼= Z/3Z. Notice that indeed we have AutQ(L2) = {id}.
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3. Let K be a field and P ∈ K[X] a separable degree-n irreducible polynomial, L its
splitting field and G = Gal(L/K).

0. Prove that |G| ≤ deg(P )!

From now on, assume that P is a palindromic monic polynomial of even degree, i.e.,
there exist a positive integer d and elements a1, . . . , ad such that

P = X2d + a1X
2d−1 + · · ·+ ad−1X

d+1 + adX
d + ad−1X

d−1 + · · ·+ a1X + 1.

Show that:

1. The set of roots ZP of P is stable under x 7→ 1
x .

2. Given the following subgroup of S2d = Sym({α+
1 , α

−
1 , α

+
2 , α

−
2 , . . . , α

+
d , α

−
d }):

W2,d = {σ ∈ S2d| ∀i∃j : σ({α+
i , α

−
i }) = {α+

j , α
−
j }},

we have that G can be embedded in W2,d.

3. |G| ≤ 2dd!

Solution:

0. As seen in class, G acts faithfully on the roots of P . This means that we have
an injection G ↪→ Sym(ZP ), where ZP denotes the set of roots of P , which has
cardinality deg(P ) by separability of P . Then |G| ≤ |Sym(ZP )| = deg(P )! as
desired.

1. One can write P (X) = adX
d +

∑d−1
i=0 ai(X

2d−i +Xi), with a0 := 1. Suppose that
x ∈ ZP . Then P (x) = 0, and

P

(
1

x

)
= adx

−d +

d−1∑
i=0

ai(x
−(2d−i) + x−i) =

1

x2d

(
adx
−d +

d∑
i=0

ai(x
i + x2d−i)

)

=
1

x2d
P (x) = 0,

so that ZP is stable under x 7→ 1
x .

2. Notice that the inversion map L× −→ L× sending x 7→ 1/x is an involution (it
is its own inverse) and has only two fixed points ±1. By irreducibility of P ,
K 3 ±1 6∈ ZP , so that Zp = {x1, x−11 , . . . , xd, x

−1
d } for some xi ∈ L with xi 6= x±1j

for i 6= j. Then the image of G via the embedding G ↪→ S2d from part 1 has
to lie inside W2,d (here we identify α∗i with x∗1i for each i = 1, . . . , d and sign
∗ ∈ {+,−}), because σ(x−1i ) = σ(xi)

−1 for each i.

3. This just amounts to checking that |W2,d| = 2dd!. Since W2,d consists of per-
mutations and the sets of two elements Ai = {a+i , a

−
i } are pairwise disjoint for

i = 1, . . . , d, we have that each σ ∈ W2,d defines a unique permutation τσ ∈ Sd
such that τσ(i) = j if and only if σ(Ai) = Aj . Moreover, σ defines a d-tuple of
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signs (εσ,i), where εσ,i is the sign of σ(a+i ). It is easily seen that σ can be uniquely
recovered from τσ and the σ(a+i ) as σ(aεi ) = a

ε·εσ,i
τσ(i)

. In other words, we have just
defined a bijection

W2,d
∼−→ Sd × {±1}d,

and we get |W2,d| = |Sd × {±1}d| = |Sd| · |{±1}|d = d!2d as desired.

4. Let K = Q[
√

2,
√

3].

1. Show that K is Galois over Q with Galois group the Z/2Z× Z/2Z.

2. Now let L = K

[√
(
√

2 + 2)(
√

3 + 3)

]
. Show that L is Galois over Q.

Solution:

1. Viewing K as Q(
√

3)[X]/(X2 − 2) (resp., as Q(
√

2)[X]/(X2 − 3)), we see that√
2 7→ ±

√
2 (resp.,

√
3 7→ ±

√
3) define automorphisms of K over Q(

√
3) (resp.,

over Q(
√

2)), and in particular over Q. Hance AutQ(K) contains the identity, σ2
(which fixes

√
3 and changes sign to

√
2) and σ3 (which fixes

√
2 and changes sign

to
√

3). Clearly, σ2 ◦ σ3 is none of the previous Q-automorphisms of K, so that
4 ≤ |AutQ(K)| ≤ [K : Q] = 4 (see Exercise 4 from Exercise sheet 1), meaning that
|AutQ(K)| = 4 and K/Q is a Galois extension by Exercise 3 of Exercise sheet 3. In
particular, we easily see that σ22 = σ23 = (σ2σ3)

2 = id, so that G ∼= Z/2Z×Z/2Z.

2. Let x =
√

(
√

2 + 2)(
√

3 + 3). We will prove that L = K[x]/Q is Galois by checking
that x has a separable minimal polynomial over Q which splits completely in L.

First, let us check that x 6∈ K, so that [L : K] = 2 and [L : Q] = 8. This
amounts to proving that x2 = (

√
2 + 2)(

√
3 + 3) is not a square in K, and can

of course be checked directly by imposing an equality (a+ b
√

2 + c
√

3 + d
√

6)2 =
(
√

2 + 2)(
√

3 + 3) with a, b, c, d ∈ Q and finding a contradiction. Anyway, we can
avoid some computations by considering the map NK

Q(
√
2)

: K −→ Q(
√

2) sending

y 7→ y · σ3(y) (it is a norm map). It is clearly a multiplicative map, so that it
sends squares to squares. In particular, we have that

NK
Q(
√
2)

(x2) = (
√

2 + 2)(
√

3 + 3)(
√

2 + 2)(
√

3− 3) = 2 · 3 · (
√

2 + 2)2

is not a square in Q(
√

2) since 2 · (
√

2 + 2)2 is but 3 is not. Then (
√

2 + 2)(
√

3 + 3)
itself cannot be a square in K.

For ε, δ ∈ {±1}, let xε,δ :=
√

(ε
√

2 + 2)(δ
√

3 + 3). Then we claim that

f(X) :=
∏

ε,δ,γ∈{±1}

(X − γxε,δ) ∈ Q[X].

This holds because

f(X) =
∏

ε,δ∈{±1}

(X2 − x2ε,δ) ∈ K,
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and the action of Gal(K,Q) permutes the xε,δ, so that f(X) ∈ KGal(K,Q)[X] =
Q[X].by Galois correspondence.

This implies that f is the minimal polynomial of x (since [L : Q] = 8 = deg(f) and
x = x1,1 is easily seen to be such that L = Q(x)). Then comparing the squares of
two roots and using Q-linear independence of 1,

√
2,
√

3 and
√

6 we immediately
see that the roots are distinct, proving separability of f . To conclude, we need
to check that γxε,δ ∈ K(x) for each ε, δ, γ ∈ {±1}. The sign γ is not important
(as opposites always exist in a field), and clearly x1,1 = x ∈ K(x). Of course
xε,δ ∈ K(x) whenever xxε,δ ∈ K, and this holds in all the remaining cases. Indeed,
we have

xx1,−1 = (−
√

2 + 2)
√
−3 + 9 = (−

√
2 + 2)

√
6 ∈ K,

xx−1,1 = (−
√

3 + 3)
√
−2 + 4 = (−

√
3 + 3)

√
2 ∈ K,

and

xx−1,−1 =
√

(−2 + 4)(−3 + 9) =
√

12 = 2
√

3 ∈ K.

5. Let L/K be a finite Galois extension. Take x ∈ L and assume that the elements σ(x)
are all distinct for σ ∈ Gal(L/K). Show: L = K(x).

Solution:

This is a straightforward application of the Galois correspondence. We have that
K ⊆ K(x) ⊆ L, so that K(x) corresponds to the subgroup Hx ≤ G := Gal(L/K)
consisting of those σ ∈ G fixing the whole K(x). Such a σ would then fix x, and by
hypothesis only IdL does. Then K(x) = LHx = L{IdL} = L and we are done.

Another proof: notice that the minimal polynomial f of x over K needs to have degree
equal to |Gal(L/K)|, because applying the automorphisms of Gal(L/K) we obtain
|Gal(L/K)| distinct roots of f by hypothesis. Then [K(x) : K] = |Gal(L/K)| = [L : K]
implying K(x) = L.


