Solutions of exercise sheet 4

1. Let K be a field of characteristic 2 , and fix an algebraic closure \bar{K} of K. Suppose L / K is a Galois quadratic extension contained in \bar{K}.
2. Show that there exists $a \in K$ such that $L=K(b)$ where b is a root of $X^{2}-X+a$.
3. Prove that $\operatorname{Gal}(L / K) \cong \mathbb{Z} / 2 \mathbb{Z}$, and express the action of the generator of G on L as a matrix with respect to the basis $(1, b)$.
4. Suppose that for $i=1,2$ we have elements $a_{i} \in K$ and we consider the field extensions $L_{i}=K\left(b_{i}\right)$, where $b_{i} \in \bar{K}$ are roots of polynomials $X^{2}-X+a_{i}$, which we suppose to be irreducible. Show that $L_{1}=L_{2}$ if and only if there exists $\mu \in K$ such that $\mu^{2}-\mu=a_{2}-a_{1}$.

Solution:

1. Let $b_{0} \in L \backslash K$ and $f(X)=X^{2}-s X+t$ its minimal polynomial over K. Let us first notice that $s \neq 0$. Else, we would have $b_{0}^{2}=-t$, giving

$$
f(X)=X^{2}+t=\left(X-b_{0}\right)\left(X+b_{0}\right)=\left(X-b_{0}\right)^{2}
$$

since $\operatorname{char}(L)=\operatorname{char}(K)=2$, so that f would not be separable and L / K would not be Galois, contradiction.
Now b_{0} necessarily generates the whole L, and in order to find an element b in $L=K\left(b_{0}\right)$ giving a minimal polynomial of the form $X^{2}-X+a$, we write $b=\lambda b_{0}+\mu$ for $\lambda, \mu \in K$ and require $b^{2}-b \in K$. This gives (using the fact that the characteristic is 2):

$$
K \ni \lambda^{2} b_{0}^{2}+\mu^{2}-\lambda b_{0}-\mu=\lambda^{2}\left(s b_{0}-t\right)+\mu^{2}-\lambda b_{0}-\mu
$$

which by K-linear independence of 1 and b_{0} is equivalent to $\lambda^{2} s-\lambda=0$. This is true if and only if $\lambda=0$ or $\lambda=\frac{1}{s}$. The first possibility is not good because then b would lie in K. So it is enough to choose $b=x / s$ in order to obtain $b^{2}-b+\frac{t}{s^{2}}=0$, meaning that b is a root of the polynomial $g(X)=X^{2}-X+a$ for $a=t / s^{2}$ and $L=K(b)$.
2. Since $\operatorname{Gal}(L / K)=[L: K]=2$, the only possibility is that we have a cyclic Galois group of order 2 . It is generated by the non-trivial K-automorphism τ of L, which sends b to another root of g. But it is clear that $b+1$ is also a root of $g(X)$, so that $\tau(1)=1, \tau(b)=1+b$, and

$$
[\tau]_{\{1, b\}}=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)
$$

3. First, notice that L_{1} and L_{2} are both quadratic extensions of K, so that they coincide if and only if $L_{1} \subseteq L_{2}$, if and only if $b_{1}=\lambda b_{2}+\mu$ for some $\lambda, \mu \in K$. This condition is equivalent (eventually by translating μ by 1) to saying that there are $\lambda, \mu \in K$ such that $\lambda b_{2}+\mu$ is a root of $X^{2}-X+a_{1}$. This in turns is equivalent to saying that for some $\lambda, \mu \in K$ we have

$$
0=\lambda^{2} b_{2}^{2}+\mu^{2}-\lambda b_{2}-\mu+a_{1}=\lambda^{2}\left(b_{2}-a_{2}\right)-\lambda b_{2}+\mu^{2}-\mu+a_{1}
$$

where the second equality comes from the hypothesis on b_{2}. By linear independence of 1 and b_{2} we see that $\lambda^{2}=\lambda$, and the only possibility (as $b_{1} \notin K$) is that $\lambda=1$.
This means that $L_{1}=L_{2}$ if and only there exists $\mu \in K$ such that $\mu^{2}-\mu=a_{2}-a_{1}$, as desired.
2. Consider the polynomial $f=X^{3}-2 \in \mathbb{Q}[X]$, and let L be the splitting field of f.

1. Prove that $[L: \mathbb{Q}]=6$, and find intermediate extensions L_{1} and L_{2} of L over \mathbb{Q} such that $\left[L_{1}: \mathbb{Q}\right]=2$ and $\left[L_{2}: \mathbb{Q}\right]=3$.
2. Prove that L / \mathbb{Q} is a Galois extension with Galois group $G=S_{3}$ [Hint: The Galois group of L acts faithfully on the roots of $f]$.
3. Which of the four field extensions L / L_{i} and L_{i} / \mathbb{Q}, for $i=1,2$ are Galois? Find their Galois groups.

Solution:

1. Let ξ be a primitive third root of unity. Then we have a decomposition

$$
f(X)=(X-\sqrt[3]{2})(X-\xi \sqrt[3]{2})\left(X-\xi^{2} \sqrt[3]{2}\right)
$$

so that $L=\mathbb{Q}(\sqrt[3]{2}, \xi)$. We have that $L_{2}:=\mathbb{Q}(\sqrt[3]{2})$ is an intermediate field extension of L with degree 3 over \mathbb{Q}. Moreover, $\xi \notin \mathbb{R} \supseteq L_{2}$, so that L / L_{2} is nontrivial. Notice that ξ satisfies the cyclotomic polynomial $X^{2}+X+1 \in \mathbb{Q}[X] \subseteq$ $L_{2}[X]$, so that $\left[L: L_{2}\right]=2$ necessarily. This implies that $[L: \mathbb{Q}]=6$. We can also consider $L_{1}:=\mathbb{Q}(\xi)$ to get an intermediate field extension of degree 2 over \mathbb{Q} as required.
2. The Galois group G acts faithfully on the 3 roots of f, so that $G \subseteq S_{3}$. But $|G|=[L: \mathbb{Q}]=6=\left|S_{3}\right|$, so that we need $G=S_{3}$.
3. The only non-Galois extension is L_{2} / \mathbb{Q}, because the minimal polynomial of $\sqrt[3]{2}$ does not split in $L_{2}[X]$. For the other extensions, separability is always clear, and normality is immediate for L_{1} / \mathbb{Q} and L / L_{2} which have degree 2 , while L / L_{1} is normal because there the minimal polynomial of $\sqrt[3]{2}$ splits completely, and $L=L_{1}(\sqrt[3]{2})$ by construction.
Since all groups of cardinality 2 and 3 are cyclic, we have $\operatorname{Gal}\left(L / L_{2}\right) \cong \operatorname{Gal}\left(L_{1} / \mathbb{Q}\right) \cong$ $\mathbb{Z} / 2 \mathbb{Z}$ and $\operatorname{Gal}\left(L / L_{1}\right) \cong \mathbb{Z} / 3 \mathbb{Z}$. Notice that indeed we have $\operatorname{Aut}_{\mathbb{Q}}\left(L_{2}\right)=\{\operatorname{id}\}$.
3. Let K be a field and $P \in K[X]$ a separable degree- n irreducible polynomial, L its splitting field and $G=\operatorname{Gal}(L / K)$.

0 . Prove that $|G| \leq \operatorname{deg}(P)$!

From now on, assume that P is a palindromic monic polynomial of even degree, i.e., there exist a positive integer d and elements a_{1}, \ldots, a_{d} such that

$$
P=X^{2 d}+a_{1} X^{2 d-1}+\cdots+a_{d-1} X^{d+1}+a_{d} X^{d}+a_{d-1} X^{d-1}+\cdots+a_{1} X+1 .
$$

Show that:

1. The set of roots Z_{P} of P is stable under $x \mapsto \frac{1}{x}$.
2. Given the following subgroup of $S_{2 d}=\operatorname{Sym}\left(\left\{\alpha_{1}^{+}, \alpha_{1}^{-}, \alpha_{2}^{+}, \alpha_{2}^{-}, \ldots, \alpha_{d}^{+}, \alpha_{d}^{-}\right\}\right)$:

$$
W_{2, d}=\left\{\sigma \in S_{2 d} \mid \forall i \exists j: \sigma\left(\left\{\alpha_{i}^{+}, \alpha_{i}^{-}\right\}\right)=\left\{\alpha_{j}^{+}, \alpha_{j}^{-}\right\}\right\},
$$

we have that G can be embedded in $W_{2, d}$.
3. $|G| \leq 2^{d} d$!

Solution:

0 . As seen in class, G acts faithfully on the roots of P. This means that we have an injection $G \hookrightarrow \operatorname{Sym}\left(Z_{P}\right)$, where Z_{P} denotes the set of roots of P, which has cardinality $\operatorname{deg}(P)$ by separability of P. Then $|G| \leq\left|\operatorname{Sym}\left(Z_{P}\right)\right|=\operatorname{deg}(P)$! as desired.

1. One can write $P(X)=a_{d} X^{d}+\sum_{i=0}^{d-1} a_{i}\left(X^{2 d-i}+X^{i}\right)$, with $a_{0}:=1$. Suppose that $x \in Z_{P}$. Then $P(x)=0$, and

$$
\begin{aligned}
P\left(\frac{1}{x}\right) & =a_{d} x^{-d}+\sum_{i=0}^{d-1} a_{i}\left(x^{-(2 d-i)}+x^{-i}\right)=\frac{1}{x^{2 d}}\left(a_{d} x^{-d}+\sum_{i=0}^{d} a_{i}\left(x^{i}+x^{2 d-i}\right)\right) \\
& =\frac{1}{x^{2 d}} P(x)=0
\end{aligned}
$$

so that Z_{P} is stable under $x \mapsto \frac{1}{x}$.
2. Notice that the inversion map $L^{\times} \longrightarrow L^{\times}$sending $x \mapsto 1 / x$ is an involution (it is its own inverse) and has only two fixed points ± 1. By irreducibility of P, $K \ni \pm 1 \notin Z_{P}$, so that $Z_{p}=\left\{x_{1}, x_{1}^{-1}, \ldots, x_{d}, x_{d}^{-1}\right\}$ for some $x_{i} \in L$ with $x_{i} \neq x_{j}^{ \pm 1}$ for $i \neq j$. Then the image of G via the embedding $G \hookrightarrow S_{2 d}$ from part 1 has to lie inside $W_{2, d}$ (here we identify α_{i}^{*} with $x_{i}^{* 1}$ for each $i=1, \ldots, d$ and sign $* \in\{+,-\})$, because $\sigma\left(x_{i}^{-1}\right)=\sigma\left(x_{i}\right)^{-1}$ for each i.
3. This just amounts to checking that $\left|W_{2, d}\right|=2^{d} d$!. Since $W_{2, d}$ consists of permutations and the sets of two elements $A_{i}=\left\{a_{i}^{+}, a_{i}^{-}\right\}$are pairwise disjoint for $i=1, \ldots, d$, we have that each $\sigma \in W_{2, d}$ defines a unique permutation $\tau_{\sigma} \in S_{d}$ such that $\tau_{\sigma}(i)=j$ if and only if $\sigma\left(A_{i}\right)=A_{j}$. Moreover, σ defines a d-tuple of
signs $\left(\varepsilon_{\sigma, i}\right)$, where $\varepsilon_{\sigma, i}$ is the sign of $\sigma\left(a_{i}^{+}\right)$. It is easily seen that σ can be uniquely recovered from τ_{σ} and the $\sigma\left(a_{i}^{+}\right)$as $\sigma\left(a_{i}^{\varepsilon}\right)=a_{\tau_{\sigma}(i)}^{\varepsilon \cdot \varepsilon_{\sigma, i}}$. In other words, we have just defined a bijection

$$
W_{2, d} \xrightarrow{\sim} S_{d} \times\{ \pm 1\}^{d},
$$

and we get $\left|W_{2, d}\right|=\left|S_{d} \times\{ \pm 1\}^{d}\right|=\left|S_{d}\right| \cdot|\{ \pm 1\}|^{d}=d!2^{d}$ as desired.
4. Let $K=\mathbb{Q}[\sqrt{2}, \sqrt{3}]$.

1. Show that K is Galois over \mathbb{Q} with Galois group the $\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$.
2. Now let $L=K[\sqrt{(\sqrt{2}+2)(\sqrt{3}+3)}]$. Show that L is Galois over \mathbb{Q}.

Solution:

1. Viewing K as $\mathbb{Q}(\sqrt{3})[X] /\left(X^{2}-2\right)$ (resp., as $\mathbb{Q}(\sqrt{2})[X] /\left(X^{2}-3\right)$), we see that $\sqrt{2} \mapsto \pm \sqrt{2}$ (resp., $\sqrt{3} \mapsto \pm \sqrt{3}$) define automorphisms of K over $\mathbb{Q}(\sqrt{3})$ (resp., over $\mathbb{Q}(\sqrt{2})$), and in particular over \mathbb{Q}. Hance $\operatorname{Aut}_{\mathbb{Q}}(K)$ contains the identity, σ_{2} (which fixes $\sqrt{3}$ and changes sign to $\sqrt{2}$) and σ_{3} (which fixes $\sqrt{2}$ and changes sign to $\sqrt{3}$). Clearly, $\sigma_{2} \circ \sigma_{3}$ is none of the previous \mathbb{Q}-automorphisms of K, so that $4 \leq\left|\operatorname{Aut}_{\mathbb{Q}}(K)\right| \leq[K: \mathbb{Q}]=4$ (see Exercise 4 from Exercise sheet 1), meaning that $\left|\operatorname{Aut}_{\mathbb{Q}}(K)\right|=4$ and K / \mathbb{Q} is a Galois extension by Exercise 3 of Exercise sheet 3. In particular, we easily see that $\sigma_{2}^{2}=\sigma_{3}^{2}=\left(\sigma_{2} \sigma_{3}\right)^{2}=\mathrm{id}$, so that $G \cong \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$.
2. Let $x=\sqrt{(\sqrt{2}+2)(\sqrt{3}+3)}$. We will prove that $L=K[x] / \mathbb{Q}$ is Galois by checking that x has a separable minimal polynomial over \mathbb{Q} which splits completely in L. First, let us check that $x \notin K$, so that $[L: K]=2$ and $[L: \mathbb{Q}]=8$. This amounts to proving that $x^{2}=(\sqrt{2}+2)(\sqrt{3}+3)$ is not a square in K, and can of course be checked directly by imposing an equality $(a+b \sqrt{2}+c \sqrt{3}+d \sqrt{6})^{2}=$ $(\sqrt{2}+2)(\sqrt{3}+3)$ with $a, b, c, d \in \mathbb{Q}$ and finding a contradiction. Anyway, we can avoid some computations by considering the map $N_{\mathbb{Q}(\sqrt{2})}^{K}: K \longrightarrow \mathbb{Q}(\sqrt{2})$ sending $y \mapsto y \cdot \sigma_{3}(y)$ (it is a norm map). It is clearly a multiplicative map, so that it sends squares to squares. In particular, we have that

$$
N_{\mathbb{Q}(\sqrt{2})}^{K}\left(x^{2}\right)=(\sqrt{2}+2)(\sqrt{3}+3)(\sqrt{2}+2)(\sqrt{3}-3)=2 \cdot 3 \cdot(\sqrt{2}+2)^{2}
$$

is not a square in $\mathbb{Q}(\sqrt{2})$ since $2 \cdot(\sqrt{2}+2)^{2}$ is but 3 is not. Then $(\sqrt{2}+2)(\sqrt{3}+3)$ itself cannot be a square in K.
For $\varepsilon, \delta \in\{ \pm 1\}$, let $x_{\varepsilon, \delta}:=\sqrt{(\varepsilon \sqrt{2}+2)(\delta \sqrt{3}+3)}$. Then we claim that

$$
f(X):=\prod_{\varepsilon, \delta, \gamma \in\{ \pm 1\}}\left(X-\gamma x_{\varepsilon, \delta}\right) \in \mathbb{Q}[X] .
$$

This holds because

$$
f(X)=\prod_{\varepsilon, \delta \in\{ \pm 1\}}\left(X^{2}-x_{\varepsilon, \delta}^{2}\right) \in K
$$

and the action of $\operatorname{Gal}(K, \mathbb{Q})$ permutes the $x_{\varepsilon, \delta}$, so that $f(X) \in K^{\operatorname{Gal}(K, \mathbb{Q})}[X]=$ $\mathbb{Q}[X]$.by Galois correspondence.
This implies that f is the minimal polynomial of x (since $[L: \mathbb{Q}]=8=\operatorname{deg}(f)$ and $x=x_{1,1}$ is easily seen to be such that $\left.L=\mathbb{Q}(x)\right)$. Then comparing the squares of two roots and using \mathbb{Q}-linear independence of $1, \sqrt{2}, \sqrt{3}$ and $\sqrt{6}$ we immediately see that the roots are distinct, proving separability of f. To conclude, we need to check that $\gamma x_{\varepsilon, \delta} \in K(x)$ for each $\varepsilon, \delta, \gamma \in\{ \pm 1\}$. The sign γ is not important (as opposites always exist in a field), and clearly $x_{1,1}=x \in K(x)$. Of course $x_{\varepsilon, \delta} \in K(x)$ whenever $x x_{\varepsilon, \delta} \in K$, and this holds in all the remaining cases. Indeed, we have

$$
\begin{aligned}
& x x_{1,-1}=(-\sqrt{2}+2) \sqrt{-3+9}=(-\sqrt{2}+2) \sqrt{6} \in K \\
& x x_{-1,1}=(-\sqrt{3}+3) \sqrt{-2+4}=(-\sqrt{3}+3) \sqrt{2} \in K
\end{aligned}
$$

and

$$
x x_{-1,-1}=\sqrt{(-2+4)(-3+9)}=\sqrt{12}=2 \sqrt{3} \in K
$$

5. Let L / K be a finite Galois extension. Take $x \in L$ and assume that the elements $\sigma(x)$ are all distinct for $\sigma \in \operatorname{Gal}(L / K)$. Show: $L=K(x)$.

Solution:

This is a straightforward application of the Galois correspondence. We have that $K \subseteq K(x) \subseteq L$, so that $K(x)$ corresponds to the subgroup $H_{x} \leq G:=\operatorname{Gal}(L / K)$ consisting of those $\sigma \in G$ fixing the whole $K(x)$. Such a σ would then fix x, and by hypothesis only Id_{L} does. Then $K(x)=L^{H_{x}}=L^{\left\{\operatorname{Id}_{L}\right\}}=L$ and we are done.

Another proof: notice that the minimal polynomial f of x over K needs to have degree equal to $|\operatorname{Gal}(L / K)|$, because applying the automorphisms of $\operatorname{Gal}(L / K)$ we obtain $|\operatorname{Gal}(L / K)|$ distinct roots of f by hypothesis. Then $[K(x): K]=|\operatorname{Gal}(L / K)|=[L: K]$ implying $K(x)=L$.

