Algebra II

D-MATH Prof. Emmanuel Kowalski

Exercise sheet 5

Reminders. Let G be a group. We call a G-set a set X endowed with an action of G. We say that a map $f: X \longrightarrow Y$ between two G-sets is G-equivariant (or a G-map, or a map of G-sets) if for each $g \in G$ and $x \in X$ one has $g \cdot f(x) = f(g \cdot x)$, where the dot is used for the actions of G on both X and Y. An isomorphism of G-sets is a G-map $X \longrightarrow Y$ which has a two-sided inverse G-map $Y \longrightarrow X$. It is easy to see that compositions of G-maps are G-maps, and that $f: X \longrightarrow Y$ is an isomorphism of G-sets if and only if it is a bijective G-map.

The content of the marked exercise (*) should be known for the exam.

- 1. Let L/K be a finite Galois extension with Galois group G. Fix an algebraic closure K of K containing L and consider an intermediate extension L/E/K.
 - 1. Prove that composition of field homomorphisms induces an action of G on the set of K-embeddings $E \longrightarrow \overline{K}$.
 - 2. Let τ_0 be the inclusion $E \hookrightarrow \overline{K}$, and take $H = \operatorname{Stab}_G(\tau_0)$. Prove that $H = \operatorname{Gal}(L/E)$ and deduce that $L^H = E$.
 - 3. Now assume that L is the splitting field of an irreducible separable polynomial $P \in K[X]$, and that $E = K(x_0)$ for some root x_0 of P. Show that the set of K-embeddings $E \longrightarrow \overline{K}$ is isomorphic as a G-set to the set Z_P of roots of P with the usual action of G.
- 2. (*) Let L/K be a finite Galois extension of degree n with Galois group G. For $x \in L$, let m_x be the K-linear map $L \longrightarrow L$ sending $y \mapsto xy$. We define the trace and the norm maps $\operatorname{Tr}_{L/K}, \operatorname{N}_{L/K} : L \longrightarrow K$ as

$$\operatorname{Tr}_{L/K}(x) = \operatorname{Tr}(m_x)$$
 and $\operatorname{N}_{L/K}(x) = \det(m_x)$.

[See Exercise sheet 11 from Algebra I, HS14]

- 1. Let $x \in L$. Denote $\chi_x(X) \in K[X]$ the characteristic polynomial of m_x , and $d_x = [K(x) : K]$. Prove: $\chi_x = (\operatorname{Irr}_{x;K})^{n/d}$.
- 2. Show that for each $x \in L$ we have

$$\operatorname{Tr}_{L/K}(x) = \sum_{\sigma \in G} \sigma(x)$$
 and $\operatorname{N}_{L/K}(x) = \prod_{\sigma \in G} \sigma(x).$

 $\mathrm{FS}~15$

Please turn over!

3. Show that if M/L/K is a tower of Galois extensions, then $N_{M/K} = N_{L/K} \circ N_{M/L}$.

Notice that the last property in fact holds for any tower of finite extension, but the proof is more complicated.

- **3.** Let L/K be a finite Galois extension with Galois group G.
 - 1. Prove that the action of G on L[X] (as seen in class) extends to an action on the field of rational functions L(X) via $\sigma \cdot \left(\frac{P}{Q}\right) = \frac{\sigma(P)}{\sigma(Q)}$.
 - 2. Check that $L(X)^G = K(X)$.
- 4. For any field K, we consider the projective line

$$\mathbb{P}(K) := (K^2 \setminus \{0\}) / \sim,$$

where $(a, b) \sim (c, d)$ if there exists $\lambda \in K^{\times}$ such that $(c, d) = (a\lambda, b\lambda)$.

- 1. Check that \sim is indeed an equivalence relation.
- 2. Prove that for any field extension L/K the map $(x, y) \mapsto (x, y)$ induces an injection $j : \mathbb{P}(K) \hookrightarrow \mathbb{P}(L)$.

From now on, assume that L/K is a finite Galois extension with Galois group G.

- 3. Prove that $\sigma \cdot (a, b) = (\sigma(a), \sigma(b))$ gives a well-defined action of G on $\mathbb{P}(L)$.
- 4. Check that $\mathbb{P}(L)^G$ is the image of $\mathbb{P}(K)$ via the injection j.
- 5. Let $f \in \mathbb{Q}[X]$ be a monic polynomial of degree n > 2, and L_f its splitting field over \mathbb{Q} . Let $G_f = \operatorname{Gal}(L/K)$, and suppose that the inclusion $G_f \hookrightarrow S_n$ is an isomorphism.
 - 1. Show that f is irreducible over \mathbb{Q}
 - 2. Given a root α of f, prove that the only automorphism of the field $\mathbb{Q}(\alpha)$ is the identity.