D-MATH Algebra 1 HS 14
Prof. Emmanuel Kowalski

Solutions of exercise sheet H

1. Let L/K be a finite Galois extension with Galois group G. Fix an algebraic closure K
of K containing L and consider an intermediate extension L/E/K.

1.

2.

Prove that composition of field homomorphisms induces an action of G on the set
of K-embeddings £ — K.

Let 79 be the inclusion £ < K, and take H = Stabg(7y). Prove that H =
Gal(L/E) and deduce that LY = E.

. Now assume that L is the splitting field of an irreducible separable polynomial

P € K[X], and that E = K(xo) for some root o of P. Show that the set of
K-embeddings E — K is isomorphic as a G-set to the set Zp of roots of P with
the usual action of G.

Solution:

1.

First, notice that each K-embedding 7 : E — K factors uniquely through the
inclusion 4 : L < K. This just amounts to checking that L contains the image of
any K-embedding 7: E — K. For x € E C L, we easily see that 7(x) is also
a root of the minimal polynomial f of z over K, because f(7(x)) = 7(f(x)) =0
since 7 fixes all the coefficients of f. Then 7(z) € L by normality of L, proving
that 7 factors through i.

If : E — K is a K-embedding, denote by 71 the unique K-embedding £ — L
such that io7" = 7. By construction, we have (io)* = 4 for each K-embedding
¥ : E — L. Now we define the action of G = Gal(L/K) on the set of K-
embeddings £ — K via 0 -7 =ioo o1+, Indeed, for each 01,02 € G and each
K-embedding 7 : E — K we have:

1t =

(0109) T =1io0(o1009) o7 =io010(0g07T)=iogy0(ioogor™)T

=01 (02 7), and

id, 7 =iort =1,

so that this is an action of G on the set of K-embeddings E — K.

. By definition of the Galois action we gave, for ¢ € G we have that o lies in

Stabg(79) if and only if

iOUOTS_:To.

Since the right hand side can be written as i o TJ_ as remarked above and ¢ is
injective, we have that the last condition is equivalent to o o T(;r = T(;r . But Tar

is just the inclusion E < L, so that o lies in Stabg(7g) if and only if it fixes
all the elements of E. This proves that Stabg(m) = Gal(L/E). Then by Galois
correspondence we get LStaba(m0) — f,
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3. Let Embg (E, K) the set of K-embeddings F — K. For E = K(xg), such an
embedding is uniquely determined by the image of xg, which has to be a root of
P = Irr(zo; K). For y € Zp, let 7, the K-embedding E — K sending z¢ + y.
This defines a bijection Zp — Embg (E, K) sending y + 7y. To conclude, we
need to prove that this is a map of G-sets, i.e., that for each y € Zp and ¢ € G
one has 7,(,) = o - 7, which is equivalent to T:(y) =0o T; . Since the two sides
consist of K-linear field homomorphisms E = K(z¢) — L, it is enough to check

their equality on xg, which is straightforward:

(007 )(w0) = o(y) = 7 (x0).

2. (*) Let L/K be a finite Galois extension of degree n with Galois group G. For z € L,
let m, be the K-linear map L — L sending y — xy. We define the trace and the
norm maps Iry g, Ny : L — K as

Trp g (z) = Tr(my) and Np/g(z) = det(my).
[See Exercise sheet 11 from Algebra I, HS14]

1. Let # € L. Denote x,(X) € K[X] the characteristic polynomial of m,, and
d, = [K(z) : K]. Prove: x, = (Irr(z; K))"/.
2. Show that for each xz € L we have

Trp k(z) = Z o(z) and Np/g(z) = H o(x).

oceG oeG

3. Show that if M/L/K is a tower of Galois extensions, then Ny;/x = Ny /g oNy/p.

Notice that the last property in fact holds for any tower of finite extension, but the
proof is more complicated.

Solution:

1. Let m = n/d. We have K (z) = @;-l;é K27, and we can fix a K (x)-basis {#1, ..., Bm}

of L, so that L has K basis {z74;} i=1,...,m with lexicographical order
§=0,...,d—1

2 d—1 d—1 d—1
Bl,xﬁl,x 61,...,3; ﬁl,ﬁg,xﬁg,...,x BQ,...,IBm,...,x Bm

Let [cijlo<ij<d De [Mz]k(x)/K, the d X d matrix of the K-linear map y — zy of

K(z), so that for j =0,...,d — 1 we have z - z; = Z;'i;ol cijz’. Then XK (z)/ Kz

be the characteristic polynomial of [¢;;]. Then by the Hamilton-Cayley theorem
XK (z)/K,z(TMz) is the zero endomorphism of K(z). Since ml = my and my is
K-linear for each non-negative integer [, we easily see that m, (@) 5.2 (@) is the zero
endomorphism of K (z), which means that X x(y)/x (%) = 0. Since xg(2)/x,2(X)
is a monic degree-d polynomial with root x, we necessarily have Xg(;)/Ke =

Irr(x; K), and we are only left to prove that y, = X%(x)/K,x'
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To prove this last equality, we use the K-basis {273;} of L and notice that - i =

i;%) cij)‘ﬁZ Z e lc)\J5,“a; B;. Then the matrix of m, seen as a K-
endomorphism of L, Wlth respect to the chosen basis, consists of d x d blocks,
which are non-zero only when they are diagonal blocks, in which case they coincide
with [c;;]. This proves that x, = X?(x) K 3 desired.

. We have that [] (X — o(z)) lies in LE[X] = K[X] and has = as a root. Notice

that this polynomial may have multiple roots. More precisely, o(z) = 7(z) if and
only if cH = 7H, where H = {0 € G : 0(z) = z} = Gal(L/K(x)). In particular,
|H| = [L : K(z)] = n/d = m, so that by choosing a set of d representatives o H
for G/H, we get

[[x-c@)= ] JI&-or I x-oc@)m
ceG ocHeG/H TeH ocHeG/H

= II &-ot)

cHeG/H

The polynomial J[,peq g(X — o(z)) is also invariant under G, so that it lies
in K[X]. Since it is monic and it has degree d = [K(z) : K], it must coincide
with Irr(z; K). Then by previous point we obtain x, = [[,c(X — o(z)), and by
comparing the coefficients of degree n — 1 and 0 we get

~Trpk(x) ==Y o(x) and (=1)"Npk(z ™ ] o

ceG oeG

ceG

since the coefficients of degree n — 1 and 0 of x, are, respectively, —Tr(m,) and
(—1)™ det(my). By simplifying a sign, we get the desired descriptions of the trace
and the norm.

. Let P = Gal(M/K). Then by the Galois correspondence P/H = G, where H =

Gal(M/L), where the isomorphism in induced by the restriction to L of the K-
automorphisms of M. This will motivate the passage (*) in the coming chain of
equalities. For x € M, by previous point we have

(NpjkoNpyp)(@) = [ 7 (H 0(56)> & II (H 0(96))

TeG oceH THeP/H oeH
= H H To(z) = H £(x) = NM/K(x)a
THeP/H oeH ep

where the product on “rH € P/H” takes a set of representatives of cosets of H,
and we have used the fact that the cosets of H form a partition of P.

3. Let L/K be a finite Galois extension with Galois group G.

1.

Prove that the action of G on L[X]| (as seen in class) extends to an action on the

field of rational functions L(X) via o - (g) = Zggg
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2. Check that L(X)% = K(X).
Solution:

1. We need to check that o - (g) = % gives indeed a well defined map L(X) —

L(X) for each o € G. Suppose that P/Q = P'/Q’. Then PQ' — QP' =0, and

(P> (P) o(P) o(P)  a(P)r(@) — a(@a(P)
0’ . —_— —_ O' . R pr— =
Q Q) 0@ o@) 7(Q)o(Q')
_oP@-QP) _ a0)
o(QQ") o(QQ)

because o- respects sums and multiplication on L[X]. Hence the map is well-
defined. The axioms of group action for G on L(X) follow immediately from the
corresponding axioms for the action of G on L[X].

2. Tt is clear that K(X) C L(X)%. Conversely, assume that P/Q € L(X)Y, and,
without loss of generality, that P and @ are coprime polynomials in L(X), with
@ monic. Then for each ¢ we have

and the only possibility is that o(P) = f, - P, 0(Q) = f» - Q for some f, € L[X],
because (P, Q) = 1. As o does not change the degree of the polynomials on which
it acts, we actually have that f, € L. Moreover, o fixes the leading coefficient of
Q (which is 1 € K), so that the only possibility is f, = 1. Then P,Q € L[X]¢ =
LY[X] = K[X], so that indeed P/Q € K(X).

4. For any field K, we consider the projective line

P(K) = (K*\{0})/ ~,
where (a,b) ~ (c,d) if there exists A € K* such that (c,d) = (aX,bA).

1. Check that ~ is indeed an equivalence relation.

2. Prove that for any field extension L/K the map (z,y) — (x,y) induces an injection
j:P(K)— P(L).

From now on, assume that L/K is a finite Galois extension with Galois group G.

3. Prove that ¢ - (a,b) = (0(a), o (b)) gives a well-defined action of G on IP(L).
4. Check that P(L)% is the image of P(K) via the injection j.

Solution:
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1. Reflexivity of ~ is clear (by taking A = 1). Now suppose that (c,d) ~ (a,b), with
(¢,d) = (aX,bA) for some A € K*. Then (a,b) = (aAy,bA3) = (3¢, 3d), so that
(a,b) ~ (¢, d) proving symmetry (we used the fact that A € K* is invertible).
Now assume that (a,b) ~ (¢,d) ~ (e, f) with (e, f) = (Ae, Ad) and (¢, d) = (pa, ub)
for some A, € K*. Then (e, f) = (Aua, Aub), and A # 0, giving (a,b) ~ (e, f),
which proves transitivity.

2. To avoid confusion, we call ~g (resp., ~1) the equivalence relation defined on
K?\{0} (resp., L?\{0}). We have clearly an inclusion (K2\{0}) < (L?\{0}) (via
(z,y) — (z,y)), which induces a well defined map j : P(K) — P(K), because if
(a,b) ~k (c,d), then (a,b) ~p, (¢,d) since K* C L*. To prove that j is injective
amounts to checking that whenever (a,b) ~p, (c,d) for (a,b),(c,d) € (K?\ {0}),
then actually (a,b) ~x (¢,d). This is immediate, since (a,b) ~1 (c,d) implies
that ¢ = Aa and d = \b for A € L™, and since one out of a and b is non-zero - by
simplicity, suppose a - we get A =c/a € KNL* = K*.

3. Since automorphisms of L are injective, they never send a non-zero element to
zero, so that G acts on L? \ {0} via o - (z,y) = (0(x),0(y)). To prove that this
gives an action on P(L), we need to check independence from ~. Suppose that
o € G, and that (c,d) = (Aa, \b) € (L?\ {0}) for some A\ € L*. Then

0 - (¢,d) = (o(Xa), 0(Ab)) = (¢(N)o(a), c(N)a (b)) ~L (o(a), (b)) = o - (a,b),

and o- is a well-defined map P(L) — P(L). The axioms of group action follow
immediately from the definition.

4. An element in j(IP(K)) has a representative of the form (a,b) with a,b € K not

simultaneously zero. It is clear that G acts trivially on such a representative, so
that j(IP(K)) C P(L)“.
Conversely, assume that («, 3) represents an element in IP(L) which is fixed by any
o € G. If a =0, then 8 € L*, and multiplication by the scalar 57! gives («a, 8) =
(0,8) ~r (0,1), which represents j([(0,1)]~,)- Else a # 0, and multiplication by
the scalar o' gives (o, 3) ~1 (1,a”!3). Since each o € G fixes this class, we
have (1,a7'B8) ~1, (1,0(a"1f)), and the only possible scalar factor is 1, so that
a8 € L¢ = K, and («, B) represents a class in IP(L) lying in the image of j.

5. Let f € Q[X] be a monic polynomial of degree n > 2, and Ly its splitting field over

Q. Let Gy = Gal(L/K), and suppose that the inclusion Gy < S, is an isomorphism.

1. Show that f is irreducible over Q)

2. Given a root a of f, prove that the only automorphism of the field Q(«) is the
identity.

Solution:
1. Suppose that f factors as f = gh, and consider the extension of splitting fields

Ly/Ly/Q and Ly/Lyp/Q. We need |Zf| = n (because G < Syz(s)), whence sepa-
rability. We have a partition Z; = Z, U Z,. Let d = deg(g). Since L¢/Q, Lqy/Q
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and Lp/Q are all normal extensions, we have that Gal(Ls/Q)/Gal(Ls/Ly) =
Gal(Ly/Q) (and similarly for h) via restriction of automorphisms. In particular,
automorphisms of Ly restrict to automorphisms of L, and Ly, so that they per-
mute the roots of g and the roots of h separately. Then the image of G via the
embedding in S, is contained in Sy x S,,_4, and the only possibility is that d =0
orn—d =0, so that f = gh is a trivial decomposition. Hence f is irreducible.

. We claim that Q(«) cannot contain other roots of f. From this claim, we automat-
ically get that Aut(Q(a)) = Autq(Q(a)) = {idg()}, because an automorphism
of Q(«) should send « to a root of f lying Q(«).

We are then only left to prove that Q(«) does not contain other roots of f. By
previous point, f is the minimal polynomial of a, so that [Q(«) : Q] = n. Let
g = /(X —a) € Q(a)[X]. Then Gal(L;/Qa)) = [L; : Q(a)] = (n— 1)}, and
Ly is the splitting field of g over Q(«). The Galois group Gal(Ly/Q(«a)) fixes
all the roots of g lying in Q(«), and if by contradiction there are ¢ > 0 such
roots, then the image of this Galois group via the embedding in S,,_; lies inside
S1 X -+ x 81 x S,_¢, where S; appears t times. But this is impossible, since

Gal(Ly/Q(a))] = (n - D).



