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Solutions of exercise sheet 6

1. (Irreducibility of the cyclotomic polynomial) Let n be a positive integer, and P ∈ Z[X]
a monic irreducible factor of Xn − 1 ∈ Q[X]. Suppose that ξ is a root of P .

1. Show that for each k ∈ Z≥0 there exists a unique polynomial Rk ∈ Z[X] such that
deg(Rk) < deg(P ) and P (ξk) = Rk(ξ). Prove that {Rk|k ∈ Z≥0} is a finite set.
We define

a := sup{|u| : u is a coefficient of some Rk}

2. Show that for k = p a prime, p divides all coefficients of Rp, and that when p > a
one has Rp = 0 [Hint: P (ξp) = P (ξp)− P (ξ)p].

3. Deduce that if all primes dividing some positive integer m are strictly greater then
a, then P (ξm) = 0.

4. Prove that if r and n are coprime, then P (ξr) = 0 [Hint: Consider the quantity
m = r + n

∏
p≤a,p-r p].

5. Recall the definition of n-th cyclotomic polynomial Φn for n ∈ Z>0: we take
Wn ⊆ C to be the set of primitive n-th roots of unity, and define

Φn(X) :=
∏
x∈Wn

(X − x).

Prove the following equality for n ∈ Z>0:∏
0<d|n

Φd(X) = Xn − 1,

and deduce that Φn ∈ Z[X] for every n.

6. Prove that the n-th cyclotomic polynomial is irreducible. [Hint: Take ξ :=
exp(2πi/n) and P its minimal polynomial over Q. Check that P satisfies the
required hypothesis to deduce that Φn(X)|P (using Points 1-4). Then irreducibil-
ity of P together with Point 5 allow you to conclude.]

Solution: Recall that for a monic polynomial f ∈ Z[X] we know that f is irreducible
in Z[X] if and only if it is irreducible in Q[X] (see the Gauss’s Lemma, in the solution
of Exercise Sheet 11 of Algebra I, HS 2014).

1. Since P is monic and irreducible in Z[X], it is also irreducible in Q[X], so that
Q(ξ) ∼= Q[X]/(P (X)) is an algebraic extension of Q of degree deg(P ), and the
elements 1, ξ, . . . , ξdeg(P ) are linearly independent. Then P (ξk) ∈ Q(ξ) cannot
be expressed in more then one way as P (ξk) = Rk(ξ) with Rk ∈ Z[X] of degree
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< deg(P ), and we only have to check existence. This is a special case of proving
that for each f ∈ Z[X] we have f(ξ) = b0 + b1ξ+ · · ·+ bdeg(P )−1ξ

deg(P )−1 for some
bi ∈ Z, which is easily proven by induction on deg(f): the statement is trivial for
all deg(f) < deg(P ); for bigger degree, we see that the degree of f can be lowered
(up to equivalence modulo P ) by substituting the maximal power Xdeg(P )+a of X
in f with Xa(Xdeg(P )−P (X)), which has degree strictly smaller then deg(P ) + a
as P is monic, so that the inductive hypothesis can be applied. [More simply,
one can notice that Z[X] is a unique factorization domain, and that Euclidean
division of f by P can be performed (as in Q[X]), so that Rk(X) is nothing but
the residue of the division of R(Xk) by P (X).]

Since ξk = ξh for n|k − h, the set {ξk : k ∈ Z≥0} is finite, and so is the set of the
Rk’s.

2. Notice that for f ∈ Z[X] one has that f(Xp) − f(X)p is divisible by p. Indeed,
we write f =

∑s
j=0 λjX

j and consider the multinomial coefficient for a partition
into positive integers t =

∑
i ti:

(∗)
(

t

t1, . . . , ts

)
=

t!

t1! · · · ts!
=

(
t

t1

)(
t− t1
t2

)(
t− t1 − t2

t3

)
· · ·
(
ts−1 + ts
ts−1

)
∈ Z,

which counts the number of partitions of a set of t elements into subsets of
t1, t2, . . . , ts elements, and we have

f(Xp)− f(X)p =
s∑
j=0

λjX
jp −

∑
e0+···+ej=p

0≤ej≤p

(
p

e0, . . . , es

) s∏
j

(λj)
ejXjej

=
s∑
j=0

(λj − λpj )X
jp −

∑
e0+···+ej=p

0≤ej<p

(
p

e0, . . . , es

) s∏
j=0

(λj)
ejXjej .

By Fermat’s little theorem we have p|λj − λpj for each j. Moreover, each multino-
mial coefficient appearing in the second sum is divisible by p, because the definition
in terms of factorials in (∗) makes it clear that none of the ej has p as a factor,
so that p does not cancel out while simplifying the fraction, which belongs to Z.
Hence p|f(Xp)− f(X)p.

We can then write P (ξp) = P (ξp) − P (ξ)p = pQ(ξ) for some Q(X) ∈ Z[X],
and by what we proved in the previous point we can write Q(ξ) = RQ(ξ) for
some polynomial RQ ∈ Z[X] of degree strictly smaller than deg(P ). This gives
Rp(ξ) = P (ξp) = pRQ(ξ), and by uniqueness of Rp we can conclude that Rp =
pRQ ∈ pZ[X].

If p > a, then the absolute values of the coefficients of Rp are non-negative mul-
tiples of p, and by definition of a they need to be zero, so that Rp = 0 in this
case.

3. This is an easy induction on the number s of primes (counted with multiplicity)
dividing m. One can indeed write m =

∏s
i=1 pi for some primes pi > a. For

s = 1 this is just the previous point, because Rp1 = 0 means P (ξp1) = 0. More
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in general, by inductive hypothesis we can assume that P (ξp1···ps−1) = 0, and
apply the previous point with ξp1···ps−1 (which is a root of P ) instead of ξ to get
P ((ξp1···ps−1)ps) = 0.

4. Let m = r + n
∏
p≤a,p-r p. For q ≤ a a prime, we see that q either divides r or

n
∏
p≤a,p-r p, so that q does not divide m and by previous point we get P (ξm) = 0.

But ξn = 1 by hypothesis (because P |Xn − 1), so that ξm = ξr and we get
P (ξr) = 0.

5. Let γn =
∏

0<d|n Φd. Since a complex number belongs to Wk if and only if it
has multiplicative order k, all the Wk’s are disjoint. Then γn has distinct roots,
and its set of roots is ∪0<d|nWd. On the other hand, the roots of Xn − 1 are
also all distinct: they are indeed the n distinct complex numbers exp(2πik/n) for
a = 0, . . . , n − 1. It is then easy to see that the two polynomials have indeed
the same roots, since a n-th root of unity has order d dividing n, and primitive
d-th roots of unity are n-th roots of unity for d|n. As both γn and Φn are monic,
unique factorization in Q[X] gives γn = Φn as desired.

We then prove that the coefficients of the Φn are integer by induction on n. For
n = 1 we have Φn = X − 1 ∈ Z[X]. For n > 1, suppose that Φk ∈ Z[X] for all
k < n. Then

Φn =
Xn − 1∏

0<d|n
d 6=n

Φd(X)
,

and since the denominator lies in Z[X] by inductive hypothesis, we can conclude
that Φn ∈ Z[X]. Indeed, Φn needs necessarily to lie in Q[X] (else, for l the
minimal degree of a coefficient of Φn not lying in Q and m the minimal degree of
a non-zero coefficients of the denominator, one would get that the coefficient of
degree l+m in Xn− 1 would not lie in Q, contradiction). We can then write the
monic polynomial Φn as 1

µΘn for some primitive polynomial Θn ∈ Z[X], but then
Gauss’s Lemma (see the solution of Exercise Sheet 11 of Algebra I, HS 2014) tells
us that Xn − 1 equals 1

d times a primitive polynomial, and the only possibility is
d = ±1, which implies that Φn ∈ Z[X].

6. ξ = exp(2πi/n) satisfies both its minimal polynomial P and Xn − 1, so that
P |Xn − 1. Being Xn − 1 and P monic we necessarily have P ∈ Z[X] by Gauss’s
lemma. ThenWn = {ξr : 0 < r < n, (r, n) = 1}, so that by point 4 we get P (x) = 0
for each x ∈ Wn and by definition of Φn we obtain Φn|P . This is a divisibility
relation between two polynomials in Q[X], hence an equality as P is irreducible
in Q[X]. In particular, the cyclotomic polynomial Φn is itself irreducible.

2. Let f(X) = X3 − 3X + 1 ∈ Q[X], and α ∈ Q̄ be a root of f . Define K = Q(α).

1. Check that f is irreducible in Q[X].

2. Prove that f splits over K, and deduce that K/Q is Galois with group Z/3Z.
[Hint: Factor f over Q(α) as f = (X−α)g, and solve g, observing that 12−3α2 =
(−4 + α+ 2α2)2]
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3. Deduce, without computation, that the discriminant of f is a square in Q×. Then
check this by using the formula of the discriminant ∆ = −4a3 − 27b2 for a cubic
polynomial of the form X3 + aX + b.

Solution:

1. f is irreducible in Q[X] if and only if it has no root in Q. By Gauss’s lemma, such
a root would actually lie in Z as f is monic, so that it would divide the constant
term 1. But f(1) = 1− 3 + 1 = −1, while f(−1) = −1 + 3 + 1 = 3, so that f has
no integer root and is irreducible.

2. Let g(X) = X2 + aX + b ∈ K(α) be such that f = (X −α)g(X). Then equalizing
the coefficients in degree 2 and 1 we get a = α and b = α2 − 3, so that g(X) =
X2 + αX + (α2 − 3). Then

g(X) =
(
X +

α

2

)2
− 1

4
(12− 3α2) =

(
X +

α

2

)2
−
(

1

2
(−4 + α+ 2α2)

)2

=

(
X +

α

2
+

1

2
(−4 + α+ 2α2)

)
·
(
X +

α

2
− 1

2
(−4 + α+ 2α2)

)
,

Then f splits in K which is its splitting field over Q and as such is Galois (the
polynomial f is separable because the roots of g are distinct and they are different
from α) of degree 3, so that its Galois group is Z/3Z (which is the only group
with 3 elements up to isomorphism).

3. Via the action on the roots of f , the Galois group is embedded in S3. Since the
only subgroup of S3 containing 3 elements is A3, the image of Gal(K/Q) in S3
via this embedding is A3, and the discriminant of f is a square in Q× as seen in
class.

Using the given formula we see indeed that ∆ = +4 · 27− 27 = 3 · 27 = 92 ∈ Q×.

3. Let n be a positive integer. Prove that the symmetric group Sn is generated by the
cycle (1 2 · · · n) and τ = (a b), if b− a is coprime with n.

Solution: Without loss of generality, assume that b > a. Then 〈σb−a〉 = 〈σ〉 by
hypothesis, so that 〈σ, (a b)〉 = 〈σb−a, (a b)〉 and since σb−a(a) = b, up to renaming the
elements permuted by Sn we can assume without loss of generality that (a b) = (1 2).

It is easily seen that for each transposition (α β) and permutation γ one has γ(α β)γ−1 =
(γ(α) γ(β)). Then σk(1 2)σ−k = (k+ 1 k+ 2) for each 0 ≤ k ≤ n−2, so that 〈σ, (1 2)〉
contains all the transpositions (k k + 1) for 1 ≤ k ≤ n− 1.

We now prove that 〈σ, (1 2)〉 = 〈σ, (1 2), (2 3), . . . , (n−1 n)〉 contains all transpositions.
Each permutation can be written as (α β) with β > α, and we work by induction
on β − α, the case β − α = 1 being trivial. Suppose that we have proven that all
permutations between two elements whose difference is strictly smaller then β − α do
lie in 〈σ, (1 2)〉. Then applying γ(α β)γ−1 = (γ(α) γ(β)) for γ = (β − 1 β) we get
(β − 1 β)(αβ − 1)(β − 1 β) = (α β) ∈ 〈σ, (1 2)〉 by inductive hypothesis.
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To conclude, we just have to notice that the set of all transpositions generates Sn,
since every permutation can be written as a product of disjoint cycles, and a cycle
(a1 a2 . . . at) can be written as (a1 at)(a1 at−1) · · · (a1 a2)

4. Let f ∈ Q[X] be an irreducible polynomial of prime degree p, and suppose that it has
precisely 2 non-real roots. Let Lf be the splitting field of f , and G := Gal(Lf/Q).
Recall that the action of G on the roots of f gives an injective group homomorphism
G ↪→ Sp, and call H the image of G via this injection.

1. Notice that the complex conjugation is a Q-automorphism of Lf , and deduce that
H contains a transposition.

2. Show that p divides the order of G, and that G contains an element of order p
[Hint: Use First Sylow Theorem. See Exercise 7 from Exercise Sheet 5 of the
HS14 course Algebra I].

3. Conclude that H = Sp [Hint: Previous exercise].

Use this to show that the Galois group of the splitting field of f(X) = X5 − 4X + 2 ∈
Q[X] is S5. [You have to check that f is irreducible and has precisely 2 non-real roots.]

Solution:

1. Decomposing a complex number into real and imaginary part z = x+iy one easily
checks that z 7→ z̄ respects sum and multiplication, and fixes 0 and 1, so that it
is a field automorphism of C (bijectivity is immediate from the fact that it is its
own inverse). Moreover, conjugates of roots of f ∈ Q are still roots of f (since
f(x) = f(x)), so that complex conjugation restricts to an automorphism of Lf .
Since it only interchanges the 2 non-real roots, its image in H is a transposition.

2. For x any root of f , we have that p = deg(f) = [Q(x) : Q]|[Lf : Q] = |G| by
multiplicativity of the degree in towers of extensions, so that p divides the order of
G. Then by the First Sylow Theorem G has a p-subgroup, and given a non-trivial
element g of this subgroup has order pa for some positive a. Then gp

a−1 ∈ G has
order p.

3. The image of the element of order p via the embedding in Sp is a p-cycle, and
up to reordering the roots we can assume it is the cycle (1 2 · · · p) ∈ H. The
transposition in H from Point 1 can be written as (a b) for some a, b ∈ {1, . . . , p},
and clearly b− a is coprime with p, so that we can apply the previous Exercise to
get that H = Sp.

The polynomial f(X) = X5 − 4X + 2 has prime degree p = 5, and is irreducible by
Eisenstein’s criterion. We have d

dX f(X) = 5X4−4, and this derivative is positive when

evaluated on x ∈ R if and only if |x| ≥ 4

√
4
5 , so that f , viewed as a function R −→ R,
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has stationary points ± 4

√
4
5 . The negative is a maximum, the positive is a minimum.

Evaluating the function there we get

f(
4

√
−4

5
) = −4

5
(
4

5
− 4) + 2 > 0

f(
4

√
4

5
) =

4

5
(
4

5
− 4) + 2 < 0.

Then f is easily seen to have three real zeroes (two smaller than 4
5 and one bigger), so

that it has precisely 2 non-real roots and we are in position to apply what we proved
and conclude that the Galois group of Lf is S5.


