D-MATH Algebra 1 HS 14
Prof. Emmanuel Kowalski

Solutions of exercise sheet 6

1. (Irreducibility of the cyclotomic polynomial) Let n be a positive integer, and P € Z[X]
a monic irreducible factor of X™ — 1 € Q[X]. Suppose that £ is a root of P.

1.

Show that for each k € Z>( there exists a unique polynomial Ry € Z[X] such that
deg(Ry) < deg(P) and P(&¥) = Ri(¢). Prove that {Ry|k € Zxo} is a finite set.
We define

a := sup{|u| : u is a coefficient of some Ry}

Show that for £ = p a prime, p divides all coefficients of R,, and that when p > a
one has R, = 0 [Hint: P(£P) = P(&P) — P(&)P].

Deduce that if all primes dividing some positive integer m are strictly greater then
a, then P(£™) = 0.

Prove that if » and n are coprime, then P({") = 0 [Hint: Consider the quantity
m=r4+ angaMT,p].

. Recall the definition of n-th cyclotomic polynomial ®,, for n € Zsg: we take

W, C C to be the set of primitive n-th roots of unity, and define

On(X) = [] (X —a).

IEWn

Prove the following equality for n € Z~q:

H Pg(X)=X"—1,
0<d|n

and deduce that ®,, € Z[X] for every n.

Prove that the n-th cyclotomic polynomial is irreducible. [Hint: Take & :=
exp(2mi/n) and P its minimal polynomial over Q. Check that P satisfies the
required hypothesis to deduce that ®,,(X)|P (using Points 1-4). Then irreducibil-
ity of P together with Point 5 allow you to conclude.]

Solution: Recall that for a monic polynomial f € Z[X] we know that f is irreducible
in Z[X] if and only if it is irreducible in Q[X] (see the Gauss’s Lemma, in the solution
of Exercise Sheet 11 of Algebra I, HS 2014).

1.

Since P is monic and irreducible in Z[X], it is also irreducible in Q[X], so that
Q) = Q[X]/(P(X)) is an algebraic extension of @ of degree deg(P), and the
elements 1,¢,...,£98(P) are linearly independent. Then P(¢¥) € Q(€) cannot
be expressed in more then one way as P(£F) = Ry(€) with Ry, € Z[X] of degree
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< deg(P), and we only have to check existence. This is a special case of proving
that for each f € Z[X] we have f(§) =byg+ b1+ +bdeg(p),1§deg(P)_1 for some
b; € Z, which is easily proven by induction on deg(f): the statement is trivial for
all deg(f) < deg(P); for bigger degree, we see that the degree of f can be lowered
(up to equivalence modulo P) by substituting the maximal power X deg(P)ta of X
in f with X%(Xde&(") — P(X)), which has degree strictly smaller then deg(P) 4 a
as P is monic, so that the inductive hypothesis can be applied. [More simply,
one can notice that Z[X] is a unique factorization domain, and that Euclidean
division of f by P can be performed (as in Q[X]), so that Ry (X) is nothing but
the residue of the division of R(X*) by P(X).]

Since &F = ¢ for n|k — h, the set {€¥ : k € Z>o} is finite, and so is the set of the
Rk’s.

. Notice that for f € Z[X] one has that f(XP?) — f(X)P is divisible by p. Indeed,
we write f = Zizo )\ij and consider the multinomial coefficient for a partition
into positive integers t =, t;:

t t! t t—1 t—11—1 ts— t
(%) __ v 1 1—t2)  (ts—1t s ez,
t, .ot !t t to ts teq

which counts the number of partitions of a set of ¢t elements into subsets of
t1,to,...,ts elements, and we have

S

CORSCEDIPRLEIEDY <eo ; e)H(Aj>ejxjej
2 ey

60+--~+ej:p J
0<e;<p
s ) s
=Sy -mar- ¥ ) T,
€0y...,€
j=0 eotte;=p 0, y Cs =0
0<e;<p

By Fermat’s little theorem we have p|\; — )\g for each j. Moreover, each multino-
mial coefficient appearing in the second sum is divisible by p, because the definition
in terms of factorials in (%) makes it clear that none of the e; has p as a factor,
so that p does not cancel out while simplifying the fraction, which belongs to Z.
Hence p|f(X?) — f(X)".

We can then write P({P) = P(&P) — P(&)P = pQ(&) for some Q(X) € Z[X],
and by what we proved in the previous point we can write Q(§) = Rg(§) for
some polynomial Rg € Z[X] of degree strictly smaller than deg(P). This gives
R,(§) = P(&) = pRg(§), and by uniqueness of R, we can conclude that R, =
pRg € pZ[X].

If p > a, then the absolute values of the coefficients of R, are non-negative mul-
tiples of p, and by definition of a they need to be zero, so that R, = 0 in this
case.

. This is an easy induction on the number s of primes (counted with multiplicity)
dividing m. One can indeed write m = [[’_, p; for some primes p; > a. For
s = 1 this is just the previous point, because R, = 0 means P(£P') = 0. More
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in general, by inductive hypothesis we can assume that P(£P1Ps—1) = (, and
apply the previous point with £P1Ps=1 (which is a root of P) instead of £ to get
P((gn-perpe) =0,

. Let m =1r+ angajpr, p. For ¢ < a a prime, we see that ¢ either divides r or
n Hpga’m p, so that ¢ does not divide m and by previous point we get P(§™) = 0.
But " = 1 by hypothesis (because P|X™ — 1), so that {™ = ¢ and we get
P(e") = 0.

. Let v, = []oe djn ®,. Since a complex number belongs to Wy, if and only if it
has multiplicative order k, all the W}’s are disjoint. Then ~, has distinct roots,
and its set of roots is Uy<g,Wa. On the other hand, the roots of X" — 1 are
also all distinct: they are indeed the n distinct complex numbers exp(27mik/n) for
a =0,...,n—1. It is then easy to see that the two polynomials have indeed
the same roots, since a n-th root of unity has order d dividing n, and primitive
d-th roots of unity are n-th roots of unity for d|n. As both 7, and ®,, are monic,
unique factorization in Q[X] gives 7, = ®,, as desired.

We then prove that the coefficients of the ®,, are integer by induction on n. For
n = 1 we have ®, = X — 1 € Z[X]. For n > 1, suppose that ®; € Z[X] for all
k <n. Then

o XMl
" To<am ®a(X)’
d#n

and since the denominator lies in Z[X] by inductive hypothesis, we can conclude
that @, € Z[X]. Indeed, ¥, needs necessarily to lie in Q[X] (else, for [ the
minimal degree of a coefficient of ®,, not lying in ©Q and m the minimal degree of
a non-zero coefficients of the denominator, one would get that the coefficient of
degree [ +m in X™ — 1 would not lie in @), contradiction). We can then write the
monic polynomial ®,, as i@n for some primitive polynomial ©,, € Z[X], but then
Gauss’s Lemma (see the solution of Exercise Sheet 11 of Algebra I, HS 2014) tells
us that X" — 1 equals é times a primitive polynomial, and the only possibility is
d = £1, which implies that ®,, € Z[X].

. & = exp(2mi/n) satisfies both its minimal polynomial P and X" — 1, so that
P|X™ — 1. Being X™ — 1 and P monic we necessarily have P € Z[X] by Gauss’s
lemma. Then W,, = {£" : 0 <r < n,(r,n) = 1}, so that by point 4 we get P(x) =0
for each x € W,, and by definition of ®,, we obtain ®,|P. This is a divisibility
relation between two polynomials in Q[X], hence an equality as P is irreducible
in Q[X]. In particular, the cyclotomic polynomial ®,, is itself irreducible.

2. Let f(X)=X3-3X+1¢€ Q[X], and o € Q be a root of f. Define K = Q(a).

. Check that f is irreducible in Q[X].

. Prove that f splits over K, and deduce that K/Q is Galois with group Z/3%Z.
[Hint: Factor f over Q(a) as f = (X —a)g, and solve g, observing that 12 —3a? =
(=4 + a +2a%)?]
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3. Deduce, without computation, that the discriminant of f is a square in Q*. Then
check this by using the formula of the discriminant A = —4a3 — 27b% for a cubic
polynomial of the form X3 + aX + b.

Solution:

1. fisirreducible in Q[X] if and only if it has no root in . By Gauss’s lemma, such
a root would actually lie in Z as f is monic, so that it would divide the constant
term 1. But f(1) =1—-3+ 1= —1, while f(—1) = -1+ 3+ 1 = 3, so that f has
no integer root and is irreducible.

2. Let g(X) = X2+ aX +b € K(a) be such that f = (X —a)g(X). Then equalizing
the coefficients in degree 2 and 1 we get @ = o and b = o? — 3, so that g(X) =
X2+ aX + (a? — 3). Then

o) = (x + %)2 02307 = (X + %)2 - <;(—4+a+2a2))2

= <X+a+1(—4+a+2a2)> : <X+a —1(—4+a+2a2)> :
2 2 2 2

Then f splits in K which is its splitting field over @ and as such is Galois (the

polynomial f is separable because the roots of g are distinct and they are different

from «) of degree 3, so that its Galois group is 7Z/37 (which is the only group

with 3 elements up to isomorphism).

3. Via the action on the roots of f, the Galois group is embedded in S3. Since the
only subgroup of S35 containing 3 elements is Ag, the image of Gal(K/Q) in Ss
via this embedding is A3, and the discriminant of f is a square in Q@ as seen in
class.

Using the given formula we see indeed that A = +4-27 —27 =327 = 92 ¢ Q*.

3. Let n be a positive integer. Prove that the symmetric group .S, is generated by the
cycle (12 --- n)and 7 = (a b), if b — a is coprime with n.

Solution: Without loss of generality, assume that b > a. Then (c*~?) = (o) by
hypothesis, so that (o, (a b)) = (¢°~¢, (a b)) and since 6®~%(a) = b, up to renaming the
elements permuted by S,, we can assume without loss of generality that (a b) = (1 2).

It is easily seen that for each transposition (a ) and permutation + one has y(a 8)y ™1 =

(v(a) v(B)). Then o%(1 2)0~% = (k+1 k+2) for each 0 < k < n—2, so that (o, (1 2))
contains all the transpositions (k k+1) for 1 <k <n—1.

We now prove that (o, (1 2)) = (0, (1 2),(23),...,(n—1n)) contains all transpositions.
Each permutation can be written as (a ) with § > «, and we work by induction
on f — «, the case § — a = 1 being trivial. Suppose that we have proven that all
permutations between two elements whose difference is strictly smaller then 8 — a do
lie in (o, (1 2)). Then applying y(a 8)y~" = (y(@) ¥(B)) for v = (8 — 1 ) we get
(B=18)(af—1)(B8—1p8)=(ap) € (o,(12)) by inductive hypothesis.
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To conclude, we just have to notice that the set of all transpositions generates .S,
since every permutation can be written as a product of disjoint cycles, and a cycle
(a1 ag ...ay) can be written as (a1 a¢)(a1 ag—1) -+ (a1 a2)

. Let f € Q[X] be an irreducible polynomial of prime degree p, and suppose that it has
precisely 2 non-real roots. Let Ly be the splitting field of f, and G := Gal(L;/Q).
Recall that the action of G on the roots of f gives an injective group homomorphism
G — Sp, and call H the image of G via this injection.

1. Notice that the complex conjugation is a Q-automorphism of Ly, and deduce that
H contains a transposition.

2. Show that p divides the order of GG, and that G contains an element of order p
[Hint: Use First Sylow Theorem. See Exercise 7 from Exercise Sheet 5 of the
HS14 course Algebra IJ.

3. Conclude that H = S, [Hint: Previous exercise].

Use this to show that the Galois group of the splitting field of f(X) = X5 —4X +2 ¢
Q[X]is S5. [You have to check that f is irreducible and has precisely 2 non-real roots.]

Solution:

1. Decomposing a complex number into real and imaginary part z = x+ iy one easily
checks that z — Z respects sum and multiplication, and fixes 0 and 1, so that it
is a field automorphism of C (bijectivity is immediate from the fact that it is its
own inverse). Moreover, conjugates of roots of f € @Q are still roots of f (since
f(Z) = f(x)), so that complex conjugation restricts to an automorphism of L.
Since it only interchanges the 2 non-real roots, its image in H is a transposition.

2. For = any root of f, we have that p = deg(f) = [Q(z) : Q]|[Lf : Q] = |G| by
multiplicativity of the degree in towers of extensions, so that p divides the order of
G. Then by the First Sylow Theorem G has a p-subgroup, and given a non-trivial
element g of this subgroup has order p® for some positive a. Then gp%1 € G has

order p.

3. The image of the element of order p via the embedding in S, is a p-cycle, and
up to reordering the roots we can assume it is the cycle (1 2 --- p) € H. The
transposition in H from Point 1 can be written as (a b) for some a,b € {1,...,p},

and clearly b — a is coprime with p, so that we can apply the previous Exercise to
get that H = 5),.

The polynomial f(X) = X° —4X + 2 has prime degree p = 5, and is irreducible by
Eisenstein’s criterion. We have % f(X) =5X%—4, and this derivative is positive when

evaluated on x € R if and only if |z| > {*/% , so that f, viewed as a function R — R,

Please turn over!



has stationary points :I:i‘/% . The negative is a maximum, the positive is a minimum.
Evaluating the function there we get

(- =3 -0+2>0
NI
f( 5)—5(5—4)+2<0.

Then f is easily seen to have three real zeroes (two smaller than % and one bigger), so
that it has precisely 2 non-real roots and we are in position to apply what we proved
and conclude that the Galois group of Ly is Ss.



