Multiple Choice Questions

You should be able to identify the correct statements, and to justify the answers (either by a counterexample, or a reference to a theorem proved in class).

- 1. Let L/K be a finite extension of fields. Which of the following assertions are correct:
 - A. If the characteristic of K is zero, then L/K is normal.
 - B. If the characteristic of K is zero, then L/K is separable.
 - C. If L/K is normal, then L/K is a Galois extension.
 - D. If the characteristic of K is positive, then L/K is normal if and only if it is separable.
- **2.** Let L/K be a finite extension of fields. Which of the following assertions are correct:
 - A. If L = K(x), where x is a root of a separable polynomial in K[X], then L/K is separable.
 - B. There exists $x \in L$ such that L = K(x).
 - C. For any embedding σ of K in an algebraic closed-field \bar{K} , there exists $\tau:L\to \bar{K}$ which extends σ .
- **3.** Is it true that if K is a finite field, then any finite extension L/K is a Galois extension? What about any algebraic extension?
- **4.** Let K be a field, \bar{K} an algebraic closure of K and $P \in K[X]$ a non-constant polynomial. Let $L \subset \bar{K}$ denote the splitting field of P in \bar{K} . Which of the following assertions are correct:
 - A. The extension L/K is a normal extension.
 - B. If $x \in \overline{K}$ is a root of P, then L = K(x).
 - C. The extension L/K is a Galois extension.
 - D. If the polynomial P is irreducible, then L/K is a Galois extension.
 - E. If the characteristic of K is zero, then L/K is a Galois extension.

- **5.** Let K be a field, \bar{K} an algebraic closure of K and $L \subset \bar{K}$ a finite extension of K such that L/K is a Galois extension. Let $K \subset E \subset L$ be an intermediate extension. Which of the following assertions are correct:
 - A. The extension L/E is a Galois extension.
 - B. The extension E/K is a normal extension.
 - C. The extension E/K is a separable extension.
- **6.** Let K be a field, \bar{K} an algebraic closure of K and $L \subset \bar{K}$ a finite extension of K such that L/K is a Galois extension, and let G be its Galois group. Which of the following assertions are correct:
 - A. For any subgroup H of G, the intermediate extension $E=L^H$ is a normal extension of K.
 - B. Two subgroups H_1 and H_2 of G are equal if and only if $L^{H_1} = L^{H_2}$.
 - C. Any subgroup H of G is the Galois group of some extension E/K for some $E \subset L$.
 - D. Any subgroup H of G is the Galois group of some extension L/E for some $E \subset L$.
- 7. Let K be a field, \bar{K} an algebraic closure of K and $L \subset \bar{K}$ a finite extension of K such that L/K is a Galois extension, and let G be its Galois group. Let $x \in L$ be given and $\sigma_0 \in G$ a non-trivial element. Which of the following assertions are correct:
 - A. If $\sigma_0(x) = x$, then $x \in K$.
 - B. If G is cyclic and $\sigma_0(x) = x$, then $x \in K$.
 - C. The element

$$\sum_{\sigma \in G} \sigma(x)^2$$

belongs to K.

- D. If the set of all $\sigma(x)$, for σ ranging over G, contains at most two elements, then $[K(x):K] \leq 2$.
- **8.** Let K be a field, \bar{K} an algebraic closure of K and $L \subset \bar{K}$ a finite extension of K of degree 2. Which of the following assertions are correct:
 - A. The extension L/K is separable.
 - B. The extension L/K is normal.
 - C. If the characteristic of K is zero, then there exists $y \in L$ such that L = K(y) and $y^2 \in K^{\times}$.