Algebra I

Solutions of exercise sheet 8

- 1. In this exercise, we will give a characterization for solvable groups using commutator subgroups. See last semester's (Algebra I, HS 2014) Exercise Sheet 3, Exercise 6, for the definition and some properties of the commutator subgroup.
 - 1. Let G be a group and $G_1 \trianglelefteq G$ a normal subgroup such that G/G_1 is abelian. Show that

$$[G,G] \subseteq G_1.$$

2. Deduce that G is solvable if and only if there exists $m \ge 1$ such that $G^{(m)} = \{1\}$, where the $G^{(m)}$ are subgroups defined inductively via

$$G^{(0)} = G$$

 $G^{(i+1)} = [G^{(i)}, G^{(i)}].$

Solution: Recall that for a monic polynomial $f \in \mathbb{Z}[X]$ we know that f is irreducible in $\mathbb{Z}[X]$ if and only if it is irreducible in $\mathbb{Q}[X]$

- 1. By Point 4 of the Exercise referred to in the problem, the commutator [G, G] lies in the kernel of the projection map $G \longrightarrow G/G_1$, because G/G_1 is abelian by hypothesis. This kernel is clearly G_1 , so that $[G, G] \subseteq G_1$.
- 2. By Point 1 and 3 of the Exercise referred to in the problem, the $G^{(i)}$ form a subnormal series with abelian quotients, so that if $G^{(m)}$ is trivial for some $m \ge 1$, then G is solvable.

Conversely, suppose that G is solvable with a subnormal sequence with abelian quotients

$$\{1\} = G_m \trianglelefteq G_{m-1} \trianglelefteq \cdots \trianglelefteq G_1 \trianglelefteq G_0 = G.$$

We can prove that $G^{(m)} = \{1\}$ by checking with an induction on $k \ge 0$ that $G^{(k)} \subseteq G_k$. This property is trivial for k = 0 and it is the previous point for k = 1. Moreover, whenver $G^{(k)} \subseteq G_k$, one gets

$$G^{(k+1)} = [G^{(k)}, G^{(k)}] \subseteq [G_k, G_k] \subseteq G_{k+1},$$

where the first inclusion is immediate from the definition of commutator and the second is immediate from the first point.

- **2.** 1. Show that S_3 and S_4 are solvable groups.
 - 2. Show that the group A_5 is generated by the two permutations $(1 \ 2)(3 \ 4)$ and $(1 \ 3 \ 5)$.

3. Show that $[S_5, S_5] = A_5$ and deduce that the group S_5 is not solvable.

Solution:

1. It is clear that $\{1\} \subseteq A_3 \subseteq S_3$ is a subnormal sequence with abelian quotients, so that S_3 is solvable.

For S_4 , notice that

$$V = \{ id, (1 \ 2)(3 \ 4), (1 \ 4)(2 \ 3), (1 \ 3)(2 \ 4) \} \leq A_4.$$

It is indeed easy to check that it is a subgroup with the same group structure of $C_2 \times C_2$, and normality is immediate from the fact that it is the union of the permutations of cycle type 1+1+1+1 and 2+2 in S_4 , so that one has $V_4 \leq S_4$ and in particular $V_4 \leq A_4$. Then $|A_4/V_4| = 12/4 = 3$, so that A_4/V_4 is cyclic and hence abelian. Then we can embed a C_2 in V_4 as $C_2 = \{id, (1\ 2)(3\ 4)\}$. In conclusion, the following is a subnormal sequence with abelian quotients:

$$\{1\} \trianglelefteq C_2 \trianglelefteq V_4 \trianglelefteq A_4 \trianglelefteq S_4,$$

so that S_4 is solvable.

2. We have that $|S_5| = 5! = 120$, so that $|A_5| = 60$. Let $H = \langle (1\ 2)(3\ 4), (1\ 3\ 5) \rangle$. Clearly $H \leq A_5$ because it is generated by even permutations. Let us first notice that H contains an element of order 5:

$$H \ni (1\ 2)(3\ 4)(1\ 3\ 5) = (1\ 4\ 3\ 5\ 2).$$

This means that |H| is divisible by 2 (the order of $(1 \ 2)(3 \ 4)$), 3 (the order of $(1 \ 3 \ 5)$) and 5, so that |H| is divisible by 30. Suppose by contraddiction that |H| = 30. Then $[A_5: H] \in$ so that H would be a normal subgroup of A_5 , which is simple, contraddiction. Hence $H = A_5$.

- 3. Clearly $[S_5, S_5]$ because commutators are even permutation by construction. For the other inclusion, by the previous point it is enough to prove that $(1\ 2)(3\ 4)$ and $(1\ 3\ 5)$ lie in $[S_5, S_5]$. This is quite immediate using conjugation in S_5 (more precisely, the fact that conjugation classes consist of elements with the same cycle type):
 - (1 2) is conjugated to (3 4), so that for some $g \in S_5$ we have $g(1 2)g^{-1} = (3 4)$, so that

$$[(1\ 2),g] = (1\ 2)g(1\ 2)g^{-1} = (1\ 2)(3\ 4) \in [S_5,S_5].$$

• (1 3) is conjugated to (3 5), so that for some $g \in S_5$ we have $g(1 3)g^{-1} = (3 5)$, so that

$$[(1\ 3), g] = (1\ 3)g(1\ 3)g^{-1} = (1\ 3)(3\ 5) = (1\ 3\ 5) \in [S_5, S_5].$$

This proves that $[S_5, S_5] = A_5$. Since A_5 is simple, $[A_5, A_5]$ is either trivial or equal to A_5 . If we prove that it is non-trivial, then we can conclude that A_5 and S_5 are not solvable because of Exercise 1.

3. Let *K* be a field and consider the group

$$B_2 = \left\{ \left(\begin{array}{cc} a & x \\ 0 & b \end{array} \right) \ \middle| \ a, b \in K^{\times}, x \in K \right\} \le \operatorname{GL}_2(K)$$

Show that B_2 is solvable.

Can you find a generalization to the subgroup B_n of upper-triangular matrices in $\operatorname{GL}_n(K)$, for $n \geq 2$?

Solution: For $n \ge 1$, we consider the invertible upper-triangular matrices

$$B_n = \{ (a_{ij})_{1 \le i,j \le n} : a_{ij} = 0 \text{ for } j < i, a_{ii} \in K^{\times} \} \le \mathrm{GL}_n(K).$$

We claim that B_n is solvable (and consider n fixed). It is easy to check that the map

$$\pi_0: B_n \longrightarrow (K^{\times})^r$$
$$(\lambda_{ij})_{i,j} \mapsto (\lambda_{ii})$$

is a surjective group homomorphism. Let $M_0 = \ker(\pi_0)$. Then $B_n/M_0 \cong (K^{\times})^n$ is abelian. Notice that M_0 consists of the upper-triangular matrices with 1 in all entries of the diagonal. We know find a normal subsequence of M_0 by considering matrices with more and more zeroes. Define, for $k = 0, 1, \ldots, n-1$,

$$N_k = \{(a_{ij})_{i,j} \in M_0 | a_{ij} = 0 \text{ for } 1 \le j - i \le k\}.$$

Those are easily seen to be subgroups of M_0 satisfying $N_k \leq N_{k-1}$ for all k. Moreover, $N_0 = M_0$ and $N_{n-1} = \{1\}$. Indeed, N_k is the subgroup of matrices with 1 in the principal diagonal, and zeroes in the first k upper partial diagonals. We want to prove that N_k is a normal subgroup of N_{k-1} with abelian quotient for each $k = 1, \ldots, n$ in order to conclude. This is easily done by observing that for $k = 1, \ldots, n$ the maps

$$p_k: N_{k-1} \longrightarrow K^{n-k}$$
$$(\lambda_{ij})_{i,j} \mapsto (\lambda_{i,j+k})$$

are surjective group homomorphisms. Indeed, those maps just copy out the first upper partial diagonal which is not required to be vanishing, so that $N_k = \ker(p_k)$ for each k, implying normality and commutativity of the quotient (which is just isomorphic to a power of K).

In conclusion, we have a subnormal sequence with abelian quotients

$$\{1\} = N_{n-1} \trianglelefteq N_{n-2} \trianglelefteq \cdots \trianglelefteq N_1 \trianglelefteq N_0 = M_0 \trianglelefteq B_n.$$

4. (Gauss's Lemma) Let R be a UFD and $K = \operatorname{Frac}(R)$. We say that the elements $a_1, \ldots, a_n \in R$ are coprime if whenever $u|a_i$ for each i, then $u \in R^{\times}$. We call a non-zero polynomial $p \in R[X]$ primitive if its coefficients are coprime. Prove the following statements:

- 1. Each irreducible element in R (i.e., a non-zero non-unit in R which cannot be written as product of two non-units) is prime in R (i.e., whenever it divides a product bc, then it divides b or c).
- 2. If $a, b \in R$ are coprime and b|ac for some $c \in R$, then b|c.
- 3. Any element $\lambda \in K$ can be written as a quotient $\lambda = a/b$, with $a, b \in R$ coprime elements.
- 4. The product of two primitive polynomials $p, q \in R[X]$ is a primitive polynomial. [*Hint:* For d an irreducible element, notice that there is an isomorphism of rings $R[X]/dR[X] \cong (R/dR)[X]$, and deduce that R[X]/dR[X] is an integral domain.]
- 5. If $f \in R[X]$ can be factored as f = gh with $g, h \in K[X]$, then there exist $g', h' \in R[X]$ such that f = g'h' and $g = \lambda g'$ for some $\lambda \in K$. [*Hint:* Prove that one can write $g = \gamma \cdot G$ for some $\gamma \in K$ and $G \in R[X]$ primitive polynomial. You main need to use the three previous points.]
- 6. A polynomial $f \in R[X]$ is irreducible in R[X] if and only if it is primitive and it is irreducible in K[X].

The last three statements are usually referred to as Gauss's Lemma.

Solution:

- 1. Let $d \in R$ be an irreducible element, and suppose that d|ac for some $a, c \in R$. Then we can write de = ac. Decomposing a, c and e into irreducible and applying uniqueness (up to reordering and multiplication by units) of the decomposition we get that d necessarily divides one of the irreducible factors of ac, and such a factor is either a divisor of a or c, so that d|a or d|c.
- 2. This is a slight generalization of the previous point. Under the given hypothesis we can write be = ac for some $e \in R$. Decomposing a, b, c and e into irreducibles and applying uniqueness (up to reordering and multiplication by units) of the decomposition we see that each of the irreducible factors of b can be associated to a divisor of c to which it is equivalent (where d, d' are said to be equivalent if d = ud' for some $d \in R^{\times}$), since an irreducible factor of b cannot divide a by hypothesis, so that it cannot divide a divisor of a. Writing each irreducible factor d' of c which has been associated to some irreducible factor d of c as d' = uc for some $u \in R^{\times}$, and denoting by $v \in R^{\times}$ the product of all the units u obtained this way and by $t \in R$ the product of the remaining divisors of c we get c = vbt, so that b|c.
- 3. Each $\lambda \in K$ can be written as α/β for some $\alpha, \beta \in R$ by definition of fraction field. Decomposing β into irreducible factors, we can proceed by induction on the number $n_{\alpha,\beta}$ of irreducible factors - counted with multiplicity - appearing in this decomposition which divide α (this quantity is actually indipendent on the chosen decomposition) in order to prove that α/β is equivalent to a fraction with coprime numerator and denominator. The case $n_{\alpha,\beta} = 0$ is immediate because there we can conclude that α and β are coprime. For $n_{\alpha,\beta} > 0$, pick an irreducible factor dof β dividing α . Then by uniqueness of decomposition $\alpha = ud\alpha'$ for some $u \in \mathbb{R}^{\times}$

and $\alpha' \in R$, and α/β is equivalent to $u\alpha'/\beta'$, where $\beta' = \beta/d$. It is immediate to see that $n_{\alpha',\beta'} = n_{\alpha,\beta} - 1$, so that we can make the induction work.

4. Saying that $f \in R[X]$ is primitive is equivalent to saying that for each irreducible element of R one has that $f + dR[X] \in R[X]/dR[X]$ is non trivial. Indeed, f is primitive if and only if it is not divisible by any non-unit in R, if and only if it is not divisible by any irreducible element in R (since non-units in R are all divisible by some irreducible element in R). Following the hint, one easily check that the unique ring homomorphism

$$\gamma_d : R[X] \longrightarrow (R/dR)[X]$$

sending $X \mapsto X$ and $R \ni r \mapsto r + dR$ is surjective and has kernel dR[X], so that $R[X]/dR[X] \cong (R/dR)[X]$, which is a domain because d is prime in R by Point 1, and as such generates a prime ideal in R.

The claim follows them immediately by testing primitivity of p, q and pq via the given characterization on the quotient rings R[X]/dR[X].

5. Collecting all the irreducible factors in the numerators separately by those in the denominators, we can write

$$g = \frac{a}{c}\bar{g}$$
 and $h = \frac{a'}{c'}\bar{h}$,

for some $a, a', c, c' \in R$ with a coprime with c and a' coprime with c' (Point 3), and some primitive polynomials $\bar{g}, \bar{h} \in R[X]$. Then

$$f = \frac{aa'}{cc'}\bar{g}\bar{h},$$

where $\bar{g}\bar{h}$ is primitive by Point 4. We write $\alpha/\beta = aa'/cc'$ for some coprime α and β . Since $\frac{\alpha}{\beta}t \in R$ for each coefficient t of $\bar{g}\bar{h}$, by Point 2 applied for each t we obtain that β divides each coefficient of $\bar{g}\bar{h}$, so that $\beta \in R^{\times}$ because $\bar{g}\bar{h}$ is primitive, and $\alpha/\beta \in R$. Then we can conclude that f = g'h' for

$$g' = \frac{a'}{c'}g$$
 and $h' = \frac{c'}{a'}h$,

and $g', h' \in R[X]$.

6. Suppose that f is irreducible in R[X]. Then it needs to be primitive (since $R[X]^{\times} = R^{\times}$), and it is irreducible in K[X] by the previous point.

Conversely, suppose that f is irreducible in K[X] and primitive. Irreducibility of f in K[X] excludes decompositions of f into non-constant factors of R[X], while primitivity excludes factorizations of f with a constant factor. Hence f is irreducible in R[X].