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Prof. Emmanuel Kowalski

Solutions of exercise sheet 8

1. In this exercise, we will give a characterization for solvable groups using commutator
subgroups. See last semester’s (Algebra I, HS 2014) Exercise Sheet 3, Exercise 6, for
the definition and some properties of the commutator subgroup.

1. Let G be a group and G1EG a normal subgroup such that G/G1 is abelian. Show
that

[G,G] ⊆ G1.

2. Deduce that G is solvable if and only if there exists m ≥ 1 such that G(m) = {1},
where the G(m) are subgroups defined inductively via

G(0) = G

G(i+1) = [G(i), G(i)].

Solution: Recall that for a monic polynomial f ∈ Z[X] we know that f is irreducible
in Z[X] if and only if it is irreducible in Q[X]

1. By Point 4 of the Exercise referred to in the problem, the commutator [G,G] lies
in the kernel of the projection map G −→ G/G1, because G/G1 is abelian by
hypothesis. This kernel is clearly G1, so that [G,G] ⊆ G1.

2. By Point 1 and 3 of the Exercise referred to in the problem, the G(i) form a
subnormal series with abelian quotients, so that if G(m) is trivial for some m ≥ 1,
then G is solvable.

Conversely, suppose that G is solvable with a subnormal sequence with abelian
quotients

{1} = Gm EGm−1 E · · ·EG1 EG0 = G.

We can prove that G(m) = {1} by checking with an induction on k ≥ 0 that
G(k) ⊆ Gk. This property is trivial for k = 0 and it is the previous point for
k = 1. Moreover, whenver G(k) ⊆ Gk, one gets

G(k+1) = [G(k), G(k)] ⊆ [Gk, Gk] ⊆ Gk+1,

where the first inclusion is immediate from the definition of commutator and the
second is immediate from the first point.

2. 1. Show that S3 and S4 are solvable groups.

2. Show that the group A5 is generated by the two permutations (1 2)(3 4) and
(1 3 5).
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3. Show that [S5, S5] = A5 and deduce that the group S5 is not solvable.

Solution:

1. It is clear that {1} ⊆ A3 ⊆ S3 is a subnormal sequence with abelian quotients, so
that S3 is solvable.

For S4, notice that

V = {id, (1 2)(3 4), (1 4)(2 3), (1 3)(2 4)}EA4.

It is indeed easy to check that it is a subgroup with the same group structure
of C2 × C2, and normality is immediate from the fact that it is the union of the
permutations of cycle type 1+1+1+1 and 2+2 in S4, so that one has V4ES4 and
in particular V4EA4. Then |A4/V4| = 12/4 = 3, so that A4/V4 is cyclic and hence
abelian. Then we can embed a C2 in V4 as C2 = {id, (1 2)(3 4)}. In conclusion,
the following is a subnormal sequence with abelian quotients:

{1}E C2 E V4 EA4 E S4,

so that S4 is solvable.

2. We have that |S5| = 5!= 120, so that |A5| = 60. Let H = 〈(1 2)(3 4), (1 3 5)〉.
Clearly H ≤ A5 because it is generated by even permutations. Let us first notice
that H contains an element of order 5:

H 3 (1 2)(3 4)(1 3 5) = (1 4 3 5 2).

This means that |H| is divisible by 2 (the order of (1 2)(3 4)), 3 (the order of
(1 3 5)) and 5, so that |H| is divisible by 30. Suppose by contraddiction that
|H| = 30. Then [A5 : H]∈ so that H would be a normal subgroup of A5, which is
simple, contraddiction. Hence H = A5.

3. Clearly [S5, S5] because commutators are even permutation by construction. For
the other inclusion, by the previous point it is enough to prove that (1 2)(3 4)
and (1 3 5) lie in [S5, S5]. This is quite immediate using conjugation in S5 (more
precisely, the fact that conjugation classes consist of elements with the same cycle
type):

• (1 2) is conjugated to (3 4), so that for some g ∈ S5 we have g(1 2)g−1 = (3 4),
so that

[(1 2), g] = (1 2)g(1 2)g−1 = (1 2)(3 4) ∈ [S5, S5].

• (1 3) is conjugated to (3 5), so that for some g ∈ S5 we have g(1 3)g−1 = (3 5),
so that

[(1 3), g] = (1 3)g(1 3)g−1 = (1 3)(3 5) = (1 3 5) ∈ [S5, S5].

This proves that [S5, S5] = A5. Since A5 is simple, [A5, A5] is either trivial or
equal to A5. If we prove that it is non-trivial, then we can conclude that A5 and
S5 are not solvable because of Exercise 1.
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3. Let K be a field and consider the group

B2 =

{(
a x
0 b

) ∣∣∣∣ a, b ∈ K×, x ∈ K}
≤ GL2(K).

Show that B2 is solvable.

Can you find a generalization to the subgroup Bn of upper-triangular matrices in
GLn(K), for n ≥ 2?

Solution: For n ≥ 1, we consider the invertible upper-triangular matrices

Bn = {(aij)1≤i,j≤n : aij = 0 for j < i, aii ∈ K×} ≤ GLn(K).

We claim that Bn is solvable (and consider n fixed). It is easy to check that the map

π0 : Bn −→ (K×)n

(λij)i,j 7→ (λii)

is a surjective group homomorphism. Let M0 = ker(π0). Then Bn/M0
∼= (K×)n is

abelian. Notice that M0 consists of the upper-triangular matrices with 1 in all entries
of the diagonal. We know find a normal subsequence of M0 by considering matrices
with more and more zeroes. Define, for k = 0, 1, . . . , n− 1,

Nk = {(aij)i,j ∈M0|aij = 0 for 1 ≤ j − i ≤ k} .

Those are easily seen to be subgroups of M0 satisfying Nk ≤ Nk−1 for all k. Moreover,
N0 = M0 and Nn−1 = {1}. Indeed, Nk is the subgroup of matrices with 1 in the
principal diagonal, and zeroes in the first k upper partial diagonals. We want to prove
that Nk is a normal subgroup of Nk−1 with abelian quotient for each k = 1, . . . , n in
order to conclude. This is easily done by observing that for k = 1, . . . , n the maps

pk : Nk−1 −→ Kn−k

(λij)i,j 7→ (λi,j+k)

are surjective group homomorphisms. Indeed, those maps just copy out the first upper
partial diagonal which is not required to be vanishing, so that Nk = ker(pk) for each
k, implying normality and commutativity of the quotient (which is just isomorphic to
a power of K).

In conclusion, we have a subnormal sequence with abelian quotients

{1} = Nn−1 ENn−2 E · · ·EN1 EN0 = M0 EBn.

4. (Gauss’s Lemma) Let R be a UFD and K = Frac(R). We say that the elements
a1, . . . , an ∈ R are coprime if whenever u|ai for each i, then u ∈ R×. We call a non-
zero polynomial p ∈ R[X] primitive if its coefficients are coprime. Prove the following
statements:
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1. Each irreducible element in R (i.e., a non-zero non-unit in R which cannot be
written as product of two non-units) is prime in R (i.e., whenever it divides a
product bc, then it divides b or c).

2. If a, b ∈ R are coprime and b|ac for some c ∈ R, then b|c.
3. Any element λ ∈ K can be written as a quotient λ = a/b, with a, b ∈ R coprime

elements.

4. The product of two primitive polynomials p, q ∈ R[X] is a primitive polynomial.
[Hint: For d an irreducible element, notice that there is an isomorphism of rings
R[X]/dR[X] ∼= (R/dR)[X], and deduce that R[X]/dR[X] is an integral domain.]

5. If f ∈ R[X] can be factored as f = gh with g, h ∈ K[X], then there exist g′, h′ ∈
R[X] such that f = g′h′ and g = λg′ for some λ ∈ K. [Hint: Prove that one can
write g = γ · G for some γ ∈ K and G ∈ R[X] primitive polynomial. You main
need to use the three previous points.]

6. A polynomial f ∈ R[X] is irreducible in R[X] if and only if it is primitive and it
is irreducible in K[X].

The last three statements are usually referred to as Gauss’s Lemma.

Solution:

1. Let d ∈ R be an irreducible element, and suppose that d|ac for some a, c ∈ R.
Then we can write de = ac. Decomposing a, c and e into irreducible and applying
uniqueness (up to reordering and multiplication by units) of the decomposition
we get that d necessarily divides one of the irreducible factors of ac, and such a
factor is either a divisor of a or c, so that d|a or d|c.

2. This is a slight generalization of the previous point. Under the given hypothesis
we can write be = ac for some e ∈ R. Decomposing a, b, c and e into irreducibles
and applying uniqueness (up to reordering and multiplication by units) of the
decomposition we see that each of the irreducible factors of b can be associated
to a divisor of c to which it is equivalent (where d, d′ are said to be equivalent
if d = ud′ for some d ∈ R×), since an irreducible factor of b cannot divide a by
hypothesis, so that it cannot divide a divisor of a. Writing each irreducible factor
d′ of c which has been associated to some irreducible factor d of c as d′ = uc for
some u ∈ R×, and denoting by v ∈ R× the product of all the units u obtained
this way and by t ∈ R the product of the remaining divisors of c we get c = vbt,
so that b|c.

3. Each λ ∈ K can be written as α/β for some α, β ∈ R by definition of fraction
field. Decomposing β into irreducible factors, we can proceed by induction on the
number nα,β of irreducible factors - counted with multiplicity - appearing in this
decomposition which divide α (this quantity is actually indipendent on the chosen
decomposition) in order to prove that α/β is equivalent to a fraction with coprime
numerator and denominator. The case nα,β = 0 is immediate because there we
can conclude that α and β are coprime. For nα,β > 0, pick an irreducible factor d
of β dividing α. Then by uniqueness of decomposition α = udα′ for some u ∈ R×
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and α′ ∈ R, and α/β is equivalent to uα′/β′, where β′ = β/d. It is immediate to
see that nα′,β′ = nα,β − 1, so that we can make the induction work.

4. Saying that f ∈ R[X] is primitive is equivalent to saying that for each irreducible
element of R one has that f + dR[X] ∈ R[X]/dR[X] is non trivial. Indeed, f is
primitive if and only if it is not divisible by any non-unit in R, if and only if it is
not divisible by any irreducible element in R (since non-units in R are all divisible
by some irreducible element in R). Following the hint, one easily check that the
unique ring homomorphism

γd : R[X] −→ (R/dR)[X]

sending X 7→ X and R 3 r 7→ r + dR is surjective and has kernel dR[X], so that
R[X]/dR[X] ∼= (R/dR)[X], which is a domain because d is prime in R by Point
1, and as such generates a prime ideal in R.

The claim follows them immediately by testing primitivity of p, q and pq via the
given characterization on the quotient rings R[X]/dR[X].

5. Collecting all the irreducible factors in the numerators separately by those in the
denominators, we can write

g =
a

c
ḡ and h =

a′

c′
h̄,

for some a, a′, c, c′ ∈ R with a coprime with c and a′ coprime with c′ (Point 3),
and some primitive polynomials ḡ, h̄ ∈ R[X]. Then

f =
aa′

cc′
ḡh̄,

where ḡh̄ is primitive by Point 4. We write α/β = aa′/cc′ for some coprime α and
β. Since α

β t ∈ R for each coefficient t of ḡh̄, by Point 2 applied for each t we obtain

that β divides each coefficient of ḡh̄, so that β ∈ R× because ḡh̄ is primitive, and
α/β ∈ R. Then we can conclude that f = g′h′ for

g′ =
a′

c′
g and h′ =

c′

a′
h,

and g′, h′ ∈ R[X].

6. Suppose that f is irreducible in R[X]. Then it needs to be primitive (since
R[X]× = R×), and it is irreducible in K[X] by the previous point.

Conversely, suppose that f is irreducible in K[X] and primitive. Irreducibility
of f in K[X] excludes decompositions of f into non-constant factors of R[X],
while primitivity excludes factorizations of f with a constant factor. Hence f is
irreducible in R[X].


