Algebra I

Solutions of exercise sheet 9

1. Let G be a solvable group, and H a subgroup of G, not necessarily normal. Prove that H is solvable.

Solution: We first prove that whenever $K \leq G$ is a normal subgroup such that G/K is abelian, then for any subgroup $H \leq G$ we get that $H \cap K \leq H$ and $H/H \cap K$ is abelian.

Indeed, we are in position of applying Exercise 2 from Exercise sheet 4 of last semester's Algebra I course, as hK = Kh for each $h \in H$ by normality of K in G. This exercise tells us immediately that $H \cap K \trianglelefteq H$. Moreover, $HK \le G$ and

$$H/H \cap K \cong HK/K \le G/K,$$

so that $H/H \cap K$ is abelian since it is embeddable in an abelian group.

Now take a normal sequence with abelian quotients

$$\{1\} = G_n \trianglelefteq G_{n-1} \trianglelefteq \cdots \trianglelefteq G_1 \trianglelefteq G_0 = G.$$

Then, applying what we found above at each step, we easily see that

$$\{1\} = H_n \trianglelefteq H_{n-1} \trianglelefteq \cdots \trianglelefteq H_1 \trianglelefteq H_0 = H,$$

where $H_i := G_i \cap H$ is a normal sequence with abelian quotients for H. Hence H is solvable.

2. The aim of this exercise is to explain Cardan's formula for solutions of a degree-3 polynomial equation.

Let K be a field of characteristic 0 and $P \in K[X]$ be an irreducible degree 3 polynomial. Denote by L the splitting field of P, and assume that $\operatorname{Gal}(L/K) = S_3$. Up to a change of variable, we can assume that $P(X) = X^3 + pX + q$. Then one can find that the discriminant of P is $\Delta = -4p^3 - 27q^2$.

- 1. Show that Δ is not a square in K, and that $[L: K(\Delta)] = 3$.
- 2. Let μ_3 be the group of cubic roots of 1 in \overline{K} . Show that $L(\mu_3)/K(\sqrt{\Delta}, \mu_3)$ is a Galois extension of degree 3. Deduce that $\operatorname{Gal}(L(\mu_3)/K(\sqrt{\Delta}, \mu_3)) \cong \mathbb{Z}/3\mathbb{Z}$. [Hint: $[K(\sqrt{\Delta}, \mu_3) : K(\sqrt{\Delta})] \leq 2$.]
- 3. Let σ be a generator of $\operatorname{Gal}(L(\mu_3)/K(\sqrt{\Delta},\mu_3)) \cong \mathbb{Z}/3\mathbb{Z}$, and x a root of P in L. Prove that the set of roots of P in L is $\{x, \sigma(x), \sigma^2(x)\}$.

4. Let $\xi \in \overline{K}$ be a primitive cubic root of unity, and consider the Lagrange resolvents

$$\alpha := x + \xi \sigma(x) + \xi^2 \sigma^2(x)$$
$$\beta := x + \xi^2 \sigma(x) + \xi \sigma^2(x)$$

Prove that $x, \sigma(x), \sigma^2(x)$ can be expressed in terms of α and β . [*Hint*: $x + \sigma(x) + \sigma^2(x) = 0$. Use linear systems.]

- 5. Explain why α^3 and β^3 belong to $K(\sqrt{\Delta}, \mu_3)$. Why does this allow to solve the cubic in principle?
- 6. From now on denote the three roots of P as x_1, x_2 and x_3 . Consider $D = (x_1 x_2)(x_1 x_3)(x_2 x_3)$, so that $D^2 = \Delta$. Define also

$$A := x_1^2 x_2 + x_2^2 x_3 + x_3^2 x_1$$
$$B := x_1 x_2^2 + x_2 x_3^2 + x_3 x_1^2.$$

Prove the following equalities

$$\alpha^{3} = -9q + 3\xi A + 3\xi^{2}B, \quad \beta^{3} = -9q + 3\xi^{2}A + 3\xi B$$

Find A, B in terms of D and use this to find α and β . [*Hint:* See Chambert-Loir, A field guide to algebra, page 121, for further hints.]

Solution:

1. Since $\operatorname{char}(K) \neq 2$ we know that Δ is a square if and only if $\operatorname{Gal}(L/K)$ is a subgroup of A_3 , which is not the case by hypothesis. Hence Δ is not a square in K and $[K(\sqrt{\Delta}) : K] = 2$. Recall that $\sqrt{\Delta}$ can be chosen to be equal to $\pm D$ (where D is taken as in Point 6), so that it is clearly an element of L. Moreover, $[L:K] = |\operatorname{Gal}(L/K)| = |S_3| = 6$, so that

$$[L:K(\sqrt{\Delta})] = [L:K]/[K(\sqrt{\Delta}):K] = 3.$$

2. $L(\mu_3)$ is the splitting field of the polynomial P viewed as $P \in K(\sqrt{\Delta}, \mu_3)$, and as such it is a Galois extension of $K(\sqrt{\Delta}, \mu_3)$. Comparing the degrees in the two towers $L(\mu_3)/K(\sqrt{\Delta}, \mu_3)/K(\sqrt{\Delta})$ and $L(\mu_3)/L/K(\sqrt{\Delta})$ we see that

$$[L(\mu_3): K(\sqrt{\Delta}, \mu_3)][K(\sqrt{\Delta}, \mu_3): K(\sqrt{\Delta})] = [L(\mu_3): L] \cdot 3$$

the only possibility is that $[L(\mu_3) : K(\sqrt{\Delta}, \mu_3)] = 3$, because adjoining the cube roots of unity one only gets extensions of degree 1 or 2, so that $3|[L(\mu_3) : K(\sqrt{\Delta}, \mu_3)]$, which cannot be 6 because that μ_3 would not be contained in L, and a fortiori neither in $K(\sqrt{\Delta})$.

Since all groups of cardinality 3 are cyclic we get $\operatorname{Gal}(L(\mu_3)/K(\sqrt{\Delta},\mu_3)) \cong \mathbb{Z}/3\mathbb{Z}$. Denote this Galois group by $G := \operatorname{Gal}(L(\mu_3)/K(\sqrt{\Delta},\mu_3))$. 3. Since [K(y):K] = 3 for each root y of P, $K(\sqrt{\Delta}, \mu_3)$ cannot contain any root of P, because $[K(\sqrt{\Delta}, \mu_3):K]$ is either 2 or 4. Then P is irreducible in $K(\sqrt{\Delta}, \mu_3)[X]$ and since $L(\mu_3)$ is its splitting field over $K(\sqrt{\Delta}, \mu_3)$, G acts transitively on the roots of P, so that

$$\{x, \sigma(x), \sigma^2(x)\} = Z_P := \{y \in \bar{K} : P(y) = 0\}.$$

4. $x + \sigma(x) + \sigma^2(x) = 0$ because it is up to the sign equal to the coefficient of degree 3 - 1 = 2 in P, which is 0. We can easily solve the following linear system in $x, \sigma(x), \sigma^2(x)$:

$$\begin{cases} x + \xi\sigma(x) + \xi^2\sigma^2(x) = \alpha \\ x + \xi^2\sigma(x) + \xi\sigma^2(x) = \beta \\ x + \sigma(x) + \sigma^2(x) = 0 \end{cases}$$

to obtain

$$\left\{ \begin{array}{l} x = \frac{1}{3}\alpha + \frac{1}{3}\beta \\ \sigma(x) = \frac{1}{3}\varrho^2\alpha + \frac{1}{3}\varrho\beta \\ \sigma^2(x) = \frac{1}{3}\varrho\alpha + \frac{1}{3}\varrho^2\beta. \end{array} \right.$$

5. Notice that $\sigma(\alpha) = \xi^{-1}\alpha$ and $\sigma(\beta) = \xi\beta$ (because $\xi^3 = 1$). Then by multiplicativity of σ we get

$$\begin{split} \sigma(\alpha^3) &= \sigma(\alpha)^3 = (\xi^{-1}\alpha)^3 = \alpha^3 \\ \sigma(\beta^3) &= \sigma(\beta)^3 = (\xi^{-2}\beta)^3 = \beta^3, \end{split}$$

and since σ generates G we obtain $\alpha^3, \beta^3 \in L(\mu_3)^G = K(\sqrt{\Delta}, \mu_3)$.

This allows to solve the equation by radicals, because it tells us that α and β are cubic roots of a rational expression of $\sqrt{\Delta}$ (which is a square root of $\Delta \in K$) and μ_3 , so that in view of the previous point we can recover x, $\sigma(x)$ and $\sigma^2(x)$ as expressions containing radicals in terms of μ_3 , which can be expressed in terms of $\sqrt{-3}$.

6. The equalities for α^3 and β^3 are obtained via an easy computation that is done in Chambert-Loir's book (see Hint).

Then one has A - B = D, while A + B is a symmetric expression in x_1, x_2, x_3 , so that it can be expressed in terms of elementary symmetric expressions in x_1, x_2, x_3 , i.e., in terms of the coefficients of P. To do so, notice that

$$0 = (x_1 + x_2 + x_3)(x_1x_2 + x_1x_3 + x_2x_3) = A + B + 3x_1x_2x_3,$$

and we immediately deduce from $x_1x_2x_3 = -q$ that A + B = 3q. This allows to find

$$A = \frac{3}{2}q + \frac{1}{2}\sqrt{\Delta} \text{ and } B = \frac{3}{2}q - \frac{1}{2}\sqrt{\Delta},$$

and obtain formulas by radicals for α and β and hence for the three roots of P. See Chambert-Loir, A field guide to algebra, page 121, for explicit formulas.