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Solutions of exercise sheet 9

1. Let G be a solvable group, and H a subgroup of G, not necessarily normal. Prove that
H is solvable.

Solution: We first prove that whenever K EG is a normal subgroup such that G/K
is abelian, then for any subgroup H ≤ G we get that H ∩ K E H and H/H ∩ K is
abelian.

Indeed, we are in position of applying Exercise 2 from Exercise sheet 4 of last semester’s
Algebra I course, as hK = Kh for each h ∈ H by normality of K in G. This exercise
tells us immediately that H ∩K EH. Moreover, HK ≤ G and

H/H ∩K ∼= HK/K ≤ G/K,

so that H/H ∩K is abelian since it is embeddable in an abelian group.

Now take a normal sequence with abelian quotients

{1} = Gn EGn−1 E · · ·EG1 EG0 = G.

Then, applying what we found above at each step, we easily see that

{1} = Hn EHn−1 E · · ·EH1 EH0 = H,

where Hi := Gi ∩ H is a normal sequence with abelian quotients for H. Hence H is
solvable.

2. The aim of this exercise is to explain Cardan’s formula for solutions of a degree-3
polynomial equation.

Let K be a field of characteristic 0 and P ∈ K[X] be an irreducible degree 3 polynomial.
Denote by L the splitting field of P , and assume that Gal(L/K) = S3. Up to a change
of variable, we can assume that P (X) = X3 + pX + q. Then one can find that the
discriminant of P is ∆ = −4p3 − 27q2.

1. Show that ∆ is not a square in K, and that [L : K(∆)] = 3.

2. Let µ3 be the group of cubic roots of 1 in K̄. Show that L(µ3)/K(
√

∆, µ3) is a
Galois extension of degree 3. Deduce that Gal(L(µ3)/K(

√
∆, µ3)) ∼= Z/3Z. [Hint:

[K(
√

∆, µ3) : K(
√

∆)] ≤ 2.]

3. Let σ be a generator of Gal(L(µ3)/K(
√

∆, µ3)) ∼= Z/3Z, and x a root of P in L.
Prove that the set of roots of P in L is {x, σ(x), σ2(x)}.

Please turn over!



4. Let ξ ∈ K̄ be a primitive cubic root of unity, and consider the Lagrange resolvents

α := x+ ξσ(x) + ξ2σ2(x)

β := x+ ξ2σ(x) + ξσ2(x).

Prove that x, σ(x), σ2(x) can be expressed in terms of α and β. [Hint: x+σ(x) +
σ2(x) = 0. Use linear systems.]

5. Explain why α3 and β3 belong to K(
√

∆, µ3). Why does this allow to solve the
cubic in principle?

6. From now on denote the three roots of P as x1, x2 and x3. Consider D = (x1 −
x2)(x1 − x3)(x2 − x3), so that D2 = ∆. Define also

A := x21x2 + x22x3 + x23x1

B := x1x
2
2 + x2x

2
3 + x3x

2
1.

Prove the following equalities

α3 = −9q + 3ξA+ 3ξ2B, β3 = −9q + 3ξ2A+ 3ξB

Find A,B in terms of D and use this to find α and β. [Hint: See Chambert-Loir,
A field guide to algebra, page 121, for further hints.]

Solution:

1. Since char(K) 6= 2 we know that ∆ is a square if and only if Gal(L/K) is a
subgroup of A3, which is not the case by hypothesis. Hence ∆ is not a square
in K and [K(

√
∆) : K] = 2. Recall that

√
∆ can be chosen to be equal to ±D

(where D is taken as in Point 6), so that it is clearly an element of L. Moreover,
[L : K] = |Gal(L/K)| = |S3| = 6, so that

[L : K(
√

∆)] = [L : K]/[K(
√

∆) : K] = 3.

2. L(µ3) is the splitting field of the polynomial P viewed as P ∈ K(
√

∆, µ3), and
as such it is a Galois extension of K(

√
∆, µ3). Comparing the degrees in the two

towers L(µ3)/K(
√

∆, µ3)/K(
√

∆) and L(µ3)/L/K(
√

∆) we see that

[L(µ3) : K(
√

∆, µ3)][K(
√

∆, µ3) : K(
√

∆)] = [L(µ3) : L] · 3

the only possibility is that [L(µ3) : K(
√

∆, µ3)] = 3, because adjoining the
cube roots of unity one only gets extensions of degree 1 or 2, so that 3|[L(µ3) :
K(
√

∆, µ3)], which cannot be 6 because that µ3 would not be contained in L, and
a fortiori neither in K(

√
∆).

Since all groups of cardinality 3 are cyclic we get Gal(L(µ3)/K(
√

∆, µ3)) ∼= Z/3Z.
Denote this Galois group by G := Gal(L(µ3)/K(

√
∆, µ3)).

See next page!



3. Since [K(y) : K] = 3 for each root y of P , K(
√

∆, µ3) cannot contain any root of P ,
because [K(

√
∆, µ3) : K] is either 2 or 4. Then P is irreducible in K(

√
∆, µ3)[X]

and since L(µ3) is its splitting field over K(
√

∆, µ3), G acts transitively on the
roots of P , so that

{x, σ(x), σ2(x)} = ZP := {y ∈ K̄ : P (y) = 0}.

4. x+ σ(x) + σ2(x) = 0 because it is up to the sign equal to the coefficient of degree
3 − 1 = 2 in P , which is 0. We can easily solve the following linear system in
x, σ(x), σ2(x): 

x+ ξσ(x) + ξ2σ2(x) = α
x+ ξ2σ(x) + ξσ2(x) = β
x+ σ(x) + σ2(x) = 0

to obtain 
x = 1

3α+ 1
3β

σ(x) = 1
3%

2α+ 1
3%β

σ2(x) = 1
3%α+ 1

3%
2β.

5. Notice that σ(α) = ξ−1α and σ(β) = ξβ (because ξ3 = 1). Then by multiplicativ-
ity of σ we get

σ(α3) = σ(α)3 = (ξ−1α)3 = α3

σ(β3) = σ(β)3 = (ξ−2β)3 = β3,

and since σ generates G we obtain α3, β3 ∈ L(µ3)
G = K(

√
∆, µ3).

This allows to solve the equation by radicals, because it tells us that α and β
are cubic roots of a rational expression of

√
∆ (which is a square root of ∆ ∈ K)

and µ3, so that in view of the previous point we can recover x, σ(x) and σ2(x) as
expressions containing radicals in terms of µ3, which can be expressed in terms of√
−3.

6. The equalities for α3 and β3 are obtained via an easy computation that is done
in Chambert-Loir’s book (see Hint).

Then one has A−B = D, while A+B is a symmetric expression in x1, x2, x3, so
that it can be expressed in terms of elementary symmetric expressions in x1, x2, x3,
i.e., in terms of the coefficients of P . To do so, notice that

0 = (x1 + x2 + x3)(x1x2 + x1x3 + x2x3) = A+B + 3x1x2x3,

and we immediately deduce from x1x2x3 = −q that A+B = 3q.

This allows to find

A =
3

2
q +

1

2

√
∆ and B =

3

2
q − 1

2

√
∆,

and obtain formulas by radicals for α and β and hence for the three roots of P .
See Chambert-Loir, A field guide to algebra, page 121, for explicit formulas.


