## Solutions of exercise sheet 9

1. Let $G$ be a solvable group, and $H$ a subgroup of $G$, not necessarily normal. Prove that $H$ is solvable.

Solution: We first prove that whenever $K \unlhd G$ is a normal subgroup such that $G / K$ is abelian, then for any subgroup $H \leq G$ we get that $H \cap K \unlhd H$ and $H / H \cap K$ is abelian.

Indeed, we are in position of applying Exercise 2 from Exercise sheet 4 of last semester's Algebra I course, as $h K=K h$ for each $h \in H$ by normality of $K$ in $G$. This exercise tells us immediately that $H \cap K \unlhd H$. Moreover, $H K \leq G$ and

$$
H / H \cap K \cong H K / K \leq G / K,
$$

so that $H / H \cap K$ is abelian since it is embeddable in an abelian group.
Now take a normal sequence with abelian quotients

$$
\{1\}=G_{n} \unlhd G_{n-1} \unlhd \cdots \unlhd G_{1} \unlhd G_{0}=G .
$$

Then, applying what we found above at each step, we easily see that

$$
\{1\}=H_{n} \unlhd H_{n-1} \unlhd \cdots \unlhd H_{1} \unlhd H_{0}=H
$$

where $H_{i}:=G_{i} \cap H$ is a normal sequence with abelian quotients for $H$. Hence $H$ is solvable.
2. The aim of this exercise is to explain Cardan's formula for solutions of a degree-3 polynomial equation.

Let $K$ be a field of characteristic 0 and $P \in K[X]$ be an irreducible degree 3 polynomial. Denote by $L$ the splitting field of $P$, and assume that $\operatorname{Gal}(L / K)=S_{3}$. Up to a change of variable, we can assume that $P(X)=X^{3}+p X+q$. Then one can find that the discriminant of $P$ is $\Delta=-4 p^{3}-27 q^{2}$.

1. Show that $\Delta$ is not a square in $K$, and that $[L: K(\Delta)]=3$.
2. Let $\mu_{3}$ be the group of cubic roots of 1 in $\bar{K}$. Show that $L\left(\mu_{3}\right) / K\left(\sqrt{\Delta}, \mu_{3}\right)$ is a Galois extension of degree 3. Deduce that $\operatorname{Gal}\left(L\left(\mu_{3}\right) / K\left(\sqrt{\Delta}, \mu_{3}\right)\right) \cong \mathbb{Z} / 3 \mathbb{Z}$. [Hint: $\left.\left[K\left(\sqrt{\Delta}, \mu_{3}\right): K(\sqrt{\Delta})\right] \leq 2.\right]$
3. Let $\sigma$ be a generator of $\operatorname{Gal}\left(L\left(\mu_{3}\right) / K\left(\sqrt{\Delta}, \mu_{3}\right)\right) \cong \mathbb{Z} / 3 \mathbb{Z}$, and $x$ a root of $P$ in $L$. Prove that the set of roots of $P$ in $L$ is $\left\{x, \sigma(x), \sigma^{2}(x)\right\}$.
4. Let $\xi \in \bar{K}$ be a primitive cubic root of unity, and consider the Lagrange resolvents

$$
\begin{aligned}
\alpha & :=x+\xi \sigma(x)+\xi^{2} \sigma^{2}(x) \\
\beta & :=x+\xi^{2} \sigma(x)+\xi \sigma^{2}(x) .
\end{aligned}
$$

Prove that $x, \sigma(x), \sigma^{2}(x)$ can be expressed in terms of $\alpha$ and $\beta$. [Hint: $x+\sigma(x)+$ $\sigma^{2}(x)=0$. Use linear systems.]
5. Explain why $\alpha^{3}$ and $\beta^{3}$ belong to $K\left(\sqrt{\Delta}, \mu_{3}\right)$. Why does this allow to solve the cubic in principle?
6. From now on denote the three roots of $P$ as $x_{1}, x_{2}$ and $x_{3}$. Consider $D=\left(x_{1}-\right.$ $\left.x_{2}\right)\left(x_{1}-x_{3}\right)\left(x_{2}-x_{3}\right)$, so that $D^{2}=\Delta$. Define also

$$
\begin{aligned}
& A:=x_{1}^{2} x_{2}+x_{2}^{2} x_{3}+x_{3}^{2} x_{1} \\
& B:=x_{1} x_{2}^{2}+x_{2} x_{3}^{2}+x_{3} x_{1}^{2} .
\end{aligned}
$$

Prove the following equalities

$$
\alpha^{3}=-9 q+3 \xi A+3 \xi^{2} B, \quad \beta^{3}=-9 q+3 \xi^{2} A+3 \xi B
$$

Find $A, B$ in terms of $D$ and use this to find $\alpha$ and $\beta$. [Hint: See Chambert-Loir, A field guide to algebra, page 121, for further hints.]

## Solution:

1. Since $\operatorname{char}(K) \neq 2$ we know that $\Delta$ is a square if and only if $\operatorname{Gal}(L / K)$ is a subgroup of $A_{3}$, which is not the case by hypothesis. Hence $\Delta$ is not a square in $K$ and $[K(\sqrt{\Delta}): K]=2$. Recall that $\sqrt{\Delta}$ can be chosen to be equal to $\pm D$ (where $D$ is taken as in Point 6), so that it is clearly an element of $L$. Moreover, $[L: K]=|\operatorname{Gal}(L / K)|=\left|S_{3}\right|=6$, so that

$$
[L: K(\sqrt{\Delta})]=[L: K] /[K(\sqrt{\Delta}): K]=3
$$

2. $L\left(\mu_{3}\right)$ is the splitting field of the polynomial $P$ viewed as $P \in K\left(\sqrt{\Delta}, \mu_{3}\right)$, and as such it is a Galois extension of $K\left(\sqrt{\Delta}, \mu_{3}\right)$. Comparing the degrees in the two towers $L\left(\mu_{3}\right) / K\left(\sqrt{\Delta}, \mu_{3}\right) / K(\sqrt{\Delta})$ and $L\left(\mu_{3}\right) / L / K(\sqrt{\Delta})$ we see that

$$
\left[L\left(\mu_{3}\right): K\left(\sqrt{\Delta}, \mu_{3}\right)\right]\left[K\left(\sqrt{\Delta}, \mu_{3}\right): K(\sqrt{\Delta})\right]=\left[L\left(\mu_{3}\right): L\right] \cdot 3
$$

the only possibility is that $\left[L\left(\mu_{3}\right): K\left(\sqrt{\Delta}, \mu_{3}\right)\right]=3$, because adjoining the cube roots of unity one only gets extensions of degree 1 or 2 , so that $3 \mid\left[L\left(\mu_{3}\right)\right.$ : $\left.K\left(\sqrt{\Delta}, \mu_{3}\right)\right]$, which cannot be 6 because that $\mu_{3}$ would not be contained in $L$, and a fortiori neither in $K(\sqrt{\Delta})$.
Since all groups of cardinality 3 are cyclic we get $\operatorname{Gal}\left(L\left(\mu_{3}\right) / K\left(\sqrt{\Delta}, \mu_{3}\right)\right) \cong \mathbb{Z} / 3 \mathbb{Z}$. Denote this Galois group by $G:=\operatorname{Gal}\left(L\left(\mu_{3}\right) / K\left(\sqrt{\Delta}, \mu_{3}\right)\right)$.
3. Since $[K(y): K]=3$ for each root $y$ of $P, K\left(\sqrt{\Delta}, \mu_{3}\right)$ cannot contain any root of $P$, because $\left[K\left(\sqrt{\Delta}, \mu_{3}\right): K\right]$ is either 2 or 4 . Then $P$ is irreducible in $K\left(\sqrt{\Delta}, \mu_{3}\right)[X]$ and since $L\left(\mu_{3}\right)$ is its splitting field over $K\left(\sqrt{\Delta}, \mu_{3}\right), G$ acts transitively on the roots of $P$, so that

$$
\left\{x, \sigma(x), \sigma^{2}(x)\right\}=Z_{P}:=\{y \in \bar{K}: P(y)=0\} .
$$

4. $x+\sigma(x)+\sigma^{2}(x)=0$ because it is up to the sign equal to the coefficient of degree $3-1=2$ in $P$, which is 0 . We can easily solve the following linear system in $x, \sigma(x), \sigma^{2}(x)$ :

$$
\left\{\begin{array}{l}
x+\xi \sigma(x)+\xi^{2} \sigma^{2}(x)=\alpha \\
x+\xi^{2} \sigma(x)+\xi \sigma^{2}(x)=\beta \\
x+\sigma(x)+\sigma^{2}(x)=0
\end{array}\right.
$$

to obtain

$$
\left\{\begin{array}{l}
x=\frac{1}{3} \alpha+\frac{1}{3} \beta \\
\sigma(x)=\frac{1}{3} \varrho^{2} \alpha+\frac{1}{3} \varrho \beta \\
\sigma^{2}(x)=\frac{1}{3} \varrho \alpha+\frac{1}{3} \varrho^{2} \beta .
\end{array}\right.
$$

5. Notice that $\sigma(\alpha)=\xi^{-1} \alpha$ and $\sigma(\beta)=\xi \beta$ (because $\xi^{3}=1$ ). Then by multiplicativity of $\sigma$ we get

$$
\begin{gathered}
\sigma\left(\alpha^{3}\right)=\sigma(\alpha)^{3}=\left(\xi^{-1} \alpha\right)^{3}=\alpha^{3} \\
\sigma\left(\beta^{3}\right)=\sigma(\beta)^{3}=\left(\xi^{-2} \beta\right)^{3}=\beta^{3},
\end{gathered}
$$

and since $\sigma$ generates $G$ we obtain $\alpha^{3}, \beta^{3} \in L\left(\mu_{3}\right)^{G}=K\left(\sqrt{\Delta}, \mu_{3}\right)$.
This allows to solve the equation by radicals, because it tells us that $\alpha$ and $\beta$ are cubic roots of a rational expression of $\sqrt{\Delta}$ (which is a square root of $\Delta \in K$ ) and $\mu_{3}$, so that in view of the previous point we can recover $x, \sigma(x)$ and $\sigma^{2}(x)$ as expressions containing radicals in terms of $\mu_{3}$, which can be expressed in terms of $\sqrt{-3}$.
6. The equalities for $\alpha^{3}$ and $\beta^{3}$ are obtained via an easy computation that is done in Chambert-Loir's book (see Hint).
Then one has $A-B=D$, while $A+B$ is a symmetric expression in $x_{1}, x_{2}, x_{3}$, so that it can be expressed in terms of elementary symmetric expressions in $x_{1}, x_{2}, x_{3}$, i.e., in terms of the coefficients of $P$. To do so, notice that

$$
0=\left(x_{1}+x_{2}+x_{3}\right)\left(x_{1} x_{2}+x_{1} x_{3}+x_{2} x_{3}\right)=A+B+3 x_{1} x_{2} x_{3},
$$

and we immediately deduce from $x_{1} x_{2} x_{3}=-q$ that $A+B=3 q$.
This allows to find

$$
A=\frac{3}{2} q+\frac{1}{2} \sqrt{\Delta} \text { and } B=\frac{3}{2} q-\frac{1}{2} \sqrt{\Delta}
$$

and obtain formulas by radicals for $\alpha$ and $\beta$ and hence for the three roots of $P$. See Chambert-Loir, A field guide to algebra, page 121, for explicit formulas.

