Applied Stochastic Processes

Exercise Sheet 3

Please hand in by 12:00 on Tuesday 17.03.2015 in the assistant's box in front of HG E 65.1

Exercise 3.1

Let $(X_i)_{i\in\mathbb{N}}$ be a sequence of square-integrable i.i.d. random variables with $\mathbb{E}[X_i] = \mu$, $\operatorname{Var}[X_i] = \sigma^2$ and τ a non-negative integer-valued random variable independent of $(X_i)_{i\in\mathbb{N}}$. For $n \in \mathbb{N}_0$ define $S_n := \sum_{i=1}^n X_i$.

(a) Suppose that $\mathbb{E}[\tau] < \infty$. Show that

$$\mathbb{E}[S_{\tau}|\tau] = \mu \tau$$
 a.s. and $\mathbb{E}[S_{\tau}] = \mu \mathbb{E}[\tau]$.

 Hint : Do not forget to argue that S_{τ} is integrable.

(b) Suppose that $\mathbb{E}[\tau^2] < \infty$. Show that

$$\mathbb{E}[(S_{\tau})^2|\tau] = \sigma^2 \tau + \mu^2 \tau^2$$
 a.s. and $\operatorname{Var}[S_{\tau}] = \sigma^2 \mathbb{E}[\tau] + \mu^2 \operatorname{Var}[\tau]$.

The above formulas are known as Wald's equations.

Exercise 3.2

Let $(N_t)_{t\geq 0}$ be a standard Poisson process with rate $\lambda>0$ and $(X_k)_{k\in\mathbb{N}}$ a sequence of real-valued i.i.d. random variables with common distribution μ such that $(N_t)_{t\geq 0}$ and $(X_k)_{k\in\mathbb{N}}$ are independent. Define the process $Z=(Z_t)_{t\geq 0}$ by

$$Z_t := \sum_{k=1}^{N_t} X_k, \quad t \ge 0.$$

Z is called a compound Poisson process with rate λ and jump size distribution μ .

- (a) For t>0 determine the distribution and the characteristic function of Z_t .
- (b) Prove that Z has stationary and independent increments.
- (c) Show that if $P[X_i = 1] = 1 P[X_i = 0] = p$, then Z is a Poisson process with rate λp .

Exercise 3.3

Theorem 3 of the lecture states that, for $\lambda > 0$, and $(N_t)_{t \ge 0}$ a counting process with $N_0 = 0$ and jumps of size 1 \mathbb{P} -a.s. the following statements, among others, are equivalent (we use the numbering of the lecture)

- (ii) $(N_t)_{t\geqslant 0}$ has independent and stationary increments, and N_t is a $Poi(\lambda t)$ random variable for all t.
- (iii) The successive jump times $(S_i)_{i\geqslant 1}$ are \mathbb{P} -a.s. finite and $(T_i)_{i\geqslant 1}$ defined by $T_i:=S_i-S_{i-1}$ are i.i.d. $\operatorname{Exp}(\lambda)$ random variables.

In the proof of the implication (ii) \Rightarrow (iii) in Theorem 3 of the lecture the joint distribution of (S_1, S_2) was computed, and it was showed that S_1 and S_2 are \mathbb{P} -a.s. finite.

Extend the proof given in the lecture to obtain the distribution of the random vector (S_1, S_2, \ldots, S_k) for any $k \in \mathbb{N}$, prove that S_i is finite for any $i \ge 1$, and prove the implication (ii) \Rightarrow (iii) for any positive integer k.