Applied Stochastic Processes

Exercise Sheet 3

Please hand in by 12:00 on Tuesday 17.03.2015 in the assistant's box in front of HGE 65.1

Exercise 3.1

Let $\left(X_{i}\right)_{i \in \mathbb{N}}$ be a sequence of square-integrable i.i.d. random variables with $\mathbb{E}\left[X_{i}\right]=\mu$, $\operatorname{Var}\left[X_{i}\right]=\sigma^{2}$ and τ a non-negative integer-valued random variable independent of $\left(X_{i}\right)_{i \in \mathbb{N}}$. For $n \in \mathbb{N}_{0}$ define $S_{n}:=\sum_{i=1}^{n} X_{i}$.
(a) Suppose that $\mathbb{E}[\tau]<\infty$. Show that

$$
\mathbb{E}\left[S_{\tau} \mid \tau\right]=\mu \tau \quad \text { a.s. } \quad \text { and } \quad \mathbb{E}\left[S_{\tau}\right]=\mu \mathbb{E}[\tau]
$$

Hint: Do not forget to argue that S_{τ} is integrable.
(b) Suppose that $\mathbb{E}\left[\tau^{2}\right]<\infty$. Show that

$$
\mathbb{E}\left[\left(S_{\tau}\right)^{2} \mid \tau\right]=\sigma^{2} \tau+\mu^{2} \tau^{2} \quad \text { a.s. } \quad \text { and } \quad \operatorname{Var}\left[S_{\tau}\right]=\sigma^{2} \mathbb{E}[\tau]+\mu^{2} \operatorname{Var}[\tau]
$$

The above formulas are known as Wald's equations.

Exercise 3.2

Let $\left(N_{t}\right)_{t \geq 0}$ be a standard Poisson process with rate $\lambda>0$ and $\left(X_{k}\right)_{k \in \mathbb{N}}$ a sequence of realvalued i.i.d. random variables with common distribution μ such that $\left(N_{t}\right)_{t \geq 0}$ and $\left(X_{k}\right)_{k \in \mathbb{N}}$ are independent. Define the process $Z=\left(Z_{t}\right)_{t \geq 0}$ by

$$
Z_{t}:=\sum_{k=1}^{N_{t}} X_{k}, \quad t \geq 0
$$

Z is called a compound Poisson process with rate λ and jump size distribution μ.
(a) For $t>0$ determine the distribution and the characteristic function of Z_{t}.
(b) Prove that Z has stationary and independent increments.
(c) Show that if $P\left[X_{i}=1\right]=1-P\left[X_{i}=0\right]=p$, then Z is a Poisson process with rate λp.

Exercise 3.3

Theorem 3 of the lecture states that, for $\lambda>0$, and $\left(N_{t}\right)_{t \geqslant 0}$ a counting process with $N_{0}=0$ and jumps of size $1 \mathbb{P}$-a.s. the following statements, among others, are equivalent (we use the numbering of the lecture)
(ii) $\left(N_{t}\right)_{t \geqslant 0}$ has independent and stationary increments, and N_{t} is a $\operatorname{Poi}(\lambda t)$ random variable for all t.
(iii) The successive jump times $\left(S_{i}\right)_{i \geqslant 1}$ are \mathbb{P}-a.s. finite and $\left(T_{i}\right)_{i \geqslant 1}$ defined by $T_{i}:=S_{i}-S_{i-1}$ are i.i.d. $\operatorname{Exp}(\lambda)$ random variables.

In the proof of the implication (ii) \Rightarrow (iii) in Theorem 3 of the lecture the joint distribution of $\left(S_{1}, S_{2}\right)$ was computed, and it was showed that S_{1} and S_{2} are \mathbb{P}-a.s. finite.

Extend the proof given in the lecture to obtain the distribution of the random vector ($S_{1}, S_{2}, \ldots, S_{k}$) for any $k \in \mathbb{N}$, prove that S_{i} is finite for any $i \geqslant 1$, and prove the implication (ii) \Rightarrow (iii) for any positive integer k.

