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(a) We assumed that the moment generating function of X exists and is finite on an open

neighbourhood I of 0. This implies that X is finite outside of a P-null set.

Let t € I. Then, there exists a positive € such that the open ball with center ¢ and radius
3e and the open ball with center 0 and radius 2¢ are contained in I.

We first want to prove that (t,w) — X(w)e!X®) is integrable on [t —€,t + €] x Q. By
Fubini-Tonelli’s theorem, it suffices to show that the successive integrations yield a finite
value.

We prove that for t € I, Xe!X is integrable, and without loss of generality, we assume that
t > 0 (the case where ¢ < 0 is treated similarly). We have,

‘XetX‘ < (XJr +X_) Xt
< Xt X 4 X+
< le(t+s)X+ + X
€ €

1 1 1 1
“etOX L S1(X < 0)+ —e N+ S1(X > 0),
€ € € €

where we define X* = max{X,0} and X~ = max{—X,0} so that X = X+ — X~. We
used that for = > 0, we have x < e®. This shows that ’XetX’ is integrable on (Q for every
tin I.

We now prove that t — E HXetXH is continuous on [t —€,t + €]. For that, we use the
dominated convergence theorem. Without loss of generality, let us assume that ¢ is strictly
positive. Let 0 < § < ¢ < e such that t — € > 0. We have

1
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‘Xe(tﬂi)X‘ g ge(t+26 )X_'_gl (X go)_'_i 71(X

!
/e 6X+
€ €

> 0)
which is integrable with respect to P on 2 and does not depend on §. Furthermore, it holds
that,

lim ‘Xe(t+5)X‘ = |XetX| , P-a.s.

0—0

The dominated convergence theorem then gives the continuity of the function ¢ — E HX etX H .
This function is therefore integrable on [t — €, + ¢]. This gives that (¢, w) — X (w)e!X®)
is integrable on [t — €,t + €] x Q.

We can now apply Fubini’s theorem to the function s — ftie E [X etX ] du. We get

/;E [Xe"Y] du:E[

) Xe“Xdu] =E [esx] —-E [e(t_€)X] ; P-as.

t—e



By a similar argument as the one above, one can easily prove that t — E [X etX ] is con-
tinuous on [t — €,t + €]. Therefore, the derivative with respect to s of the left-hand side is
the term inside the integral. This yields the result: we have proved that f is differentiable
on I, with derivative f/(t) = E [Xe'¥].

This argument can be reproduced to prove that f is n times differentiable for all integers
n, with n-th derivative f(¢) = E [X"e!X].

The derivative of F' at 0 is then

F(0) = 5 (105 (B [X])) | _
E [Xe']
- Ewﬂ‘ho
~E[X].

Differentiating a second time with respect to ¢ yields

” B d E[XetX]
! “”‘dt( B (e )

_ (IE [X2X]  E [XetX]2>

E [e'X] E [etX]?

t=0
=E[X?] ~E[X]?
= Var(X).

(b) For a Poisson random variable with parameter A and t € R, we have

E[e] =) e"P[X =n]
n=0
— Zetn%ef)\
n=0
e (et)‘)n
—e nz:o w
= eA(et_l)

and so F(t) = A (e' — 1) for t € R. Differentiating once gives F'(t) = e for ¢ € R, and
then for all n > 2 we have F()(t) = Ae!. Therefore for all n € N, ¢, = \.

Solution 1.2
k—1

(k—1)!
prove by induction that this is the density of Sy for all natural integers.

e Mfort > 0. We

The density of the Gamma(k, \) distribution is fpa)(t) = Ak

Basis: First, S = T} is exponentially distributed with parameter A with density g(t) = Ae™,
so S has a Gamma(1, \) distribution.



Induction step: Assume Sy is Gamma(k, \)-distributed and calculate the density for Sky1 (using
independence of Ty 1 and S, and convolution):

t
*(k+1) _ xk _ “At—s)y\k_S —As
g (t)y=gx*g (t)—/o)\e A (k—l)!e ds

ARHL—AE bosh! d >\k+1tk —)t
- ° ‘A(k—mls_ N

Hence Si41 is Gamma(k + 1, \)-distributed and the induction is complete.
Remarks:
e Gamma(v, \) distribution is defined for general parameters v, A > 0 and has density

v—1
v t —At

A 11(}/)e )

t>0,

(0.9)
where I'(v) = / t"~Le~tdt is the gamma function.
0

e For v = k € N this is also called the Erlang-k distribution.

e We can calculate the characteristic function of the Gamma(k, \) distribution via the char-
acteristic function of Exp(\):

. 00 . A
iuT" —(A—iu
goTl(u):E[e 1]:/0 Ae( )tdt:)\—iu’

k k
w>k_ 1y juT; | iid w1k A
@Sk(U):E{e 2= J} =E jl:[le J :E[e 1] = <)\—iu) .

Solution 1.3

(a) For all r > 0 we have
{D>r}C{N(B,)=0}C{D>r} (1)

Thus, we have on the one hand
P[D > 7] < P[N(B,) = 0] = ¢ ™" 2)
and on the other hand

P[D > r] = nh_)rrolo PD>r+1/n]> lim_>sup P[N(By41/n) = 0]
n—oo

w(r n)? — 72
Am(r+1/n) _ by (3)

= limsupe™ e ,

n—o0

yielding P[D > r] = e=*™*  Hence, the distribution function F and density f of D are
given by
Firy=1- e and flr)= 2Amre M r > 0. (4)



(b) Note that Br\ B, and B, are disjoint sets, whence N (Bg\ B,) and N(B,) are independent.
Hence, we have

f(R,7) =P[N(Br\ B,) =0|N(B,) =1 =P[N(Br\ B,) =0] = o AT(R?—r?) (5)
This immediately implies that

. . I F . _ 0 _
lim lim F(R.r) = lim lim f(R.r) =" = 1. (6)

Intuitively, f(R,r) is the probability that no point lies in the annulus Bg \ B, given that 1
point lies in the small circle B,. As the number of points in disjoints sets are independent,
the conditioning doesn’t matter. Moreover, the expected number of points in each set is
equal to A times its area. Hence as the area shrinks to 0, the expected number of points in
the area goes to 0 and the probability that no point lies in the area goes to 1.



