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Solution 2.1

(a) Let A be a bounded Borel set. Notice that for some ng € N,
AC[0,a,], Vn=n
Let us compute the characteristic function of N, (A) for n > ng at t € R:
N, (a)(t) =E [eitN"(A)}
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The function ¢ +— exp (A|A| (e — 1)) is continuous at 0, so the sequence (Np(A)),cn

converges in distribution towards a Poisson distributed random variable with parameter
A Al

(b) Let (t1,...,t;) € R¥ and Ay, Ao, ..., Ay be Borel sets such that for n > ng, we have
A1, Aoy ..., A C [0,a,]. We compute the characteristic function of the random vector
(Nn(Al),Nn(AQ), e ,Nn(Ak)) at point (tl, e ,tk) € RF:
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where we used for the fourth equality that the X;’s are independent, for the fifth equality,
that the X;’s are identically distributed, and for the sixth equality, that the X;’s are
uniformly distributed in [0, ¥]. The sequence of characteristic functions of the vectors
(N™(A1), N™"(Az),...,N"(Ag)) converges pointwise towards the product of characteristic
functions of Poisson random variables with parameter A|Aj|, A|Asa|,..., A[Ag|. The limit
function is continuous at 0, so the sequence of random vectors converges to a vector of
independent Poisson-distributed random variables with parameters A|A1|, A| Az, ..., A|Ag|.

(c) By the previous question for 0 < t1 < t2 < -+ < t < oo, the sequence of vec-
tors (N, Ny — NEL NE = N3, VR g_1)>neN converges in distribution towards
((Ntl,Nt2 — Ngy, Nty — Ntz, ooy Ny, — Ntk—l)) where N is a Poisson process with rate \.
The map that transforms (z1, z2,...,z)) into (ZL’l, ro+ 21,23+ T2+ 21, .., Z?Zl xj) is
a continuous bijection, therefore the sequence of vectors ((Nlt1 s NG Ny Nt’;))neN con-

verges in distribution to (N, Ni,, Niy, ..., Ni, ). The processes N™ converge to a Poisson
process with rate A in the sense of finite-dimentional distributions.

Solution 2.2

For n € N set ’fn := —log(Uy,)/A. Clearly, the Tn are i.1.d. as the U,, and we have for t > 0

Mt:sup{neNozifkgt}. (1)
k=1



Moreover, the Tn are exponentially distributed. Indeed, let x € R. Then we have

0 ifz <0,
1—e ™ ifz>0.

P[]} < 2] = PllogUy > —Az] = P[U; > e ] = { (2)

a) First, note that for 0 < s < ¢ we have {M; = 400} C {M; = +o0}. Hence, we have
Usso{Me = +oo} = U;en{M; = +oo}. To establish the first claim, it therefore suffices to

show that for all j € N we have P[M; = +oo] = 0. Fix j € N. Using the independence of
the T}, we have

P[M; = +oo] < P[[({Tk < j}] = [[ PITk < ]
keN k=1

(1—eM)=0. (3)
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k=1

Next, it follows immediately from the definition that (/NV;) starts at 0 and has nondecreas-
ing trajectories with values in Ng. It remains to show that the sample paths are right-
continuous. Clearly we have to check this property only outside the set (J;~o{M; = +o0}.
Fix t > 0 and let w € [,5o{M¢ < o0} and n := Ny(w) = Mi(w) € Ng. Then we have by
definition of M;

n n+1
Y Thw)<t and Y Ti(w) >t (4)
k=1 k=1
Hence, for all € > 0 sufficiently small we also have
n n+1
ka(w) <t+e and ka(w) >t +e. (5)
k=1 k=1

Therefore, for all € > 0 sufficiently small we have Ny (w) = n = N¢(w) implying that the
function s — Ng(w) is right-continuous at s = ¢.

b) Denote by (Sp)nen the sequence of jump times of N. For w € (,5o{M; < 400}, it follows
immediately from the definition of M and N that N.(w) increase by jumps of size 1 and
that S,(w) = 37, Tr(w) < oo, n € N. (Note that T,,(w) € (0,00) for all n € N). For
w € Upso{M; = +oo}, we have N.(w) = 0 and Sy, (w) = 400 for all n € N. In conclusion, N
increases by jumps of size 1, and we have S,, < co P-a.s. for all n € N. Denote by (T))neN
the sequence of interarrival times of V. This is well defined on (1,5 {M; < 400}, where we

have T,, = T,,. In particular, the T), are i.i.d. and distributed as the T,,, i.e. T,, ~ Exp(}).
This establishes the claim as we know from the lecture that a counting process with jumps
of size 1 starting at 0 and having i.i.d. interarrival times that are exponentially distributed
with parameter A > 0, is a Poisson process with rate A.

Solution 2.3

Denote by Sym(n) the symmetric group of degree m. Since the X; have a density, we have
Xay < X(g) <...< Xy P-as. Using that the X; are i.i.d. and that the order of Sym(n) is n!,



we get for all B € B(R"™)

P[(X(l), R ,X(n)) S B] = ]P)[(X(l), .. ,X(n)) S B,X(l) < X(z) <0 < X(n)]

= Z P[(X(l),...,X(n))EB,X(l) <"'<X(n),X(1):X7T(1),...

meSym(n)

= > Pl(Xeqys- - Xan) € B, Xr(1) < Xpz) <+ < X))
mESym(n)
=n!lP[(Xy,...,Xpn) €B, X1 < Xo <+ < X))

= /n W(or, ey Loy cagcncany | | (i) day -+ day,.
-1

This establishes the claim.
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