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Exercise 7.1

A die is rolled repeatedly. Which of the following stochastic processes (X, )nen are Markov
chains? For those that are, determine the transition matrix and in b), additionally, the n-step
transition matrix.

(a) Let X,, denote the number of rolls at time n since the most recent six.
(b) Let X,, denote the largest number that has come up in the first n rolls.

(c) Let X,, denote the larger number of those that came up in the rolls number n — 1 and n
(the last two rolls), and we consider (Xp,)n>2.

Exercise 7.2

Determine the transition matrices for the following homogeneous Markov chains (X,,),en:

(a) A rat moves randomly in the maze shown by the figure below.

When it leaves a room, it visits one of the neighbouring rooms with equal probabilities.
Denote by (X, )nen the sequence of rooms that the rat visits.

(b) N black and N red balls are placed in two urns so that each urn contains N balls. In each
step a ball is drawn at random from each urn, and each of the two balls is put into the
other urn so that each urn always contains N balls. Denote by X,,, n € N, the number of
red balls in the first urn after n steps.

(c) A coin is tossed repeatedly with P[‘head”] = p € (0,1). Denote by Y, n € N, the outcome
of the n-th coin toss, where we interpret 1 as “head” and 0 as “tails”. Fix k € N and define

Xp = (Yn+1> YTL+27 ce >Yn+k’)~
Hint: You can identify X,, with the corresponding binary number Zle Y4281,



Exercise 7.3

Inhomogeneous Markov chains

Let (92, F,P) be a probability space and (X, )nen a sequence of random variables valued in
some nonempty, at most countable set E endowed with the o-algebra & := 2F.

For n € N define the linear operator R(n) from the set of bounded functions on E in itself
by

(R(n)f) () == {E [f(Xy) | Xpo1 = 2], forx e EifPX, 1 =a]>0,

f(x) forz € Fif P[X,,—1 =2] =0,
for fe L™(E).
(a) Show that this linear operator is bounded, with ||R(n)|| < 1 for all integer n.

One can identify this bounded linear operator with the (possibly infinite) matrix R(n) € [0, 1]¥*F
defined as

R () = {(R(n)@) () = P[X, = y| X1 = 2] if P[Xp 1 =2]>0,
o . 5x,y if [P[Xn_l = x] = 0,

where § denotes Kronecker’s delta. We identify any function f : E — R with the (possibly
infinite) column vector f € R¥ defined by f, := f(z). Likewise, we identify any probability
measure 4 on E with the (possibly infinite) row vector u € [0,1]F defined by p, = u({z}).

(b) Show that (X,)nen is a discrete-time Markov chain if and only if for all n € N and all
bounded functions f : F — R we have

E[f(Xns1)| Xo,- .., Xp] = (R(n +1)f)x, P-as.

(c) Let p be any distribution on E. Show that (X, )nen is a discrete-time Markov chain with
Xo ~ p under P if and only if for all n € N and all zg,...,x, € F we have

P[Xo = o, ..., Xn = Tn| = pagRagz1 (1) Ryy 20(2) X -+ X Ry | 5. ().

(d) Suppose that (X, )nen is a discrete-time Markov chain such that Xy ~ p under P. Let
f: F — R be a bounded function. Show that

E[f(Xn)] = pR(D)R(2)--- R(n)f, n=0.

(e) Suppose that (X,)nen is a discrete-time Markov chain. Show that (X,)nen is a homoge-
neous Markov chain if and only if there exists a transition matrix R € [0, 1]¥*¥ such that
for all n € N and all y € E we have

R,y =Ryy(n+1) if PX,=2z]>0.

Exercise 7.4

Let (N¢)i=0 be a Poisson process with rate A > 0. Denotes its arrival times by S1,S2, ... and the
interarrival times by 77,75, . ..

Consider claims arriving at an insurance company according to N. The non-negative claim
sizes X;, 1 € {1,2,...,} are i.i.d. with common distribution function G. For x > 0, define the
risk process f;(t), which corresponds to the capital reserves of the firm at time ¢, by



Ny
fot) =2+t = X
k=1

The constant ¢ > 0 is the rate at which the firm receives the premium.
Define the no-ruin probability starting with capital = as

R(z) = P[f(t) > 0 for all t > 0].

(a) Show that if NE[X;] < ¢, then R’ satisfies the renewal equation with defect

R'(t) = F'(t)R(0) + /0 R (t — s)dF(s), (%)

where F(t) = fg AP[X; > u]du for ¢ > 0.
(b) We keep the following assumption: AE[X;] < ¢. Use the renewal equation () to show
() R(oo) = 1,
(i) R(0) =1 - 2E[X4],

c

(i) R(t) = R(0)(1+ M(t)),

where M (t) is the defective renewal function corresponding to F'.
Hint: To show (ii) and (iii), solve the Laplace transform version of the renewal equation

().

(c) Assume that the claim size has a second moment. The function R satisfies the renewal
equation with defect R = h+ R F for all ¢ > 0, with h = R(0). Assume that there exist

an « > 0 such that

)\/ “P[X > t]dt =1
€ Jo

Use Smith’s theorem in the case of a renewal process with defect to prove

e~ (c— AE[X4])
aX [7° ze®P X > x| dx’

1- R(t) ~t—o0

In other words the no-ruin probability converges exponentially to 1, as the initial capital
goes to infinity.



