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Exercise 7.1

A die is rolled repeatedly. Which of the following stochastic processes (Xn)n∈N are Markov
chains? For those that are, determine the transition matrix and in b), additionally, the n-step
transition matrix.

(a) Let Xn denote the number of rolls at time n since the most recent six.

(b) Let Xn denote the largest number that has come up in the first n rolls.

(c) Let Xn denote the larger number of those that came up in the rolls number n − 1 and n
(the last two rolls), and we consider (Xn)n≥2.

Exercise 7.2

Determine the transition matrices for the following homogeneous Markov chains (Xn)n∈N:

(a) A rat moves randomly in the maze shown by the figure below.
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— + + —
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| |

When it leaves a room, it visits one of the neighbouring rooms with equal probabilities.
Denote by (Xn)n∈N the sequence of rooms that the rat visits.

(b) N black and N red balls are placed in two urns so that each urn contains N balls. In each
step a ball is drawn at random from each urn, and each of the two balls is put into the
other urn so that each urn always contains N balls. Denote by Xn, n ∈ N, the number of
red balls in the first urn after n steps.

(c) A coin is tossed repeatedly with P[“head”] = p ∈ (0, 1). Denote by Yn, n ∈ N, the outcome
of the n-th coin toss, where we interpret 1 as “head” and 0 as “tails”. Fix k ∈ N and define
Xn := (Yn+1, Yn+2, . . . , Yn+k).

Hint : You can identify Xn with the corresponding binary number
∑k

i=1 Yn+i2
k−i.



Exercise 7.3

Inhomogeneous Markov chains
Let (Ω,F ,P) be a probability space and (Xn)n∈N a sequence of random variables valued in

some nonempty, at most countable set E endowed with the σ-algebra E := 2E .
For n ∈ N define the linear operator R(n) from the set of bounded functions on E in itself

by

(R(n)f) (x) :=

{
E [f(Xn) | Xn−1 = x] , for x ∈ E if P[Xn−1 = x] > 0,

f(x) for x ∈ E if P[Xn−1 = x] = 0,

for f ∈ L∞(E).

(a) Show that this linear operator is bounded, with ||R(n)|| 6 1 for all integer n.

One can identify this bounded linear operator with the (possibly infinite) matrixR(n) ∈ [0, 1]E×E

defined as

Rx,y(n) :=

{
(R(n)δy) (x) = P[Xn = y |Xn−1 = x] if P[Xn−1 = x] > 0,

δx,y if P[Xn−1 = x] = 0,

where δ denotes Kronecker’s delta. We identify any function f : E → R with the (possibly
infinite) column vector f ∈ RE defined by fx := f(x). Likewise, we identify any probability
measure µ on E with the (possibly infinite) row vector µ ∈ [0, 1]E defined by µx = µ({x}).

(b) Show that (Xn)n∈N is a discrete-time Markov chain if and only if for all n ∈ N and all
bounded functions f : E → R we have

E[f(Xn+1) |X0, . . . , Xn] = (R(n+ 1)f)Xn P-a.s.

(c) Let µ be any distribution on E. Show that (Xn)n∈N is a discrete-time Markov chain with
X0 ∼ µ under P if and only if for all n ∈ N and all x0, . . . , xn ∈ E we have

P[X0 = x0, . . . , Xn = xn] = µx0Rx0,x1(1)Rx1,x2(2)× · · · ×Rxn−1,xn(n).

(d) Suppose that (Xn)n∈N is a discrete-time Markov chain such that X0 ∼ µ under P. Let
f : E → R be a bounded function. Show that

E[f(Xn)] = µR(1)R(2) · · ·R(n)f, n ≥ 0.

(e) Suppose that (Xn)n∈N is a discrete-time Markov chain. Show that (Xn)n∈N is a homoge-
neous Markov chain if and only if there exists a transition matrix R ∈ [0, 1]E×E such that
for all n ∈ N and all y ∈ E we have

Rx,y = Rx,y(n+ 1) if P[Xn = x] > 0.

Exercise 7.4

Let (Nt)t>0 be a Poisson process with rate λ > 0. Denotes its arrival times by S1, S2, . . . and the
interarrival times by T1, T2, . . .

Consider claims arriving at an insurance company according to N . The non-negative claim
sizes Xi, i ∈ {1, 2, . . . , } are i.i.d. with common distribution function G. For x > 0, define the
risk process fx(t), which corresponds to the capital reserves of the firm at time t, by



fx(t) = x+ ct−
Nt∑
k=1

Xk.

The constant c > 0 is the rate at which the firm receives the premium.
Define the no-ruin probability starting with capital x as

R(x) = P[fx(t) ≥ 0 for all t > 0].

(a) Show that if λE[X1] < c, then R′ satisfies the renewal equation with defect

R′(t) = F ′(t)R(0) +

∫ t

0
R′(t− s) dF (s), (∗)

where F (t) =
∫ t
0
λ
cP[X1 > u] du for t ≥ 0.

(b) We keep the following assumption: λE[X1] < c. Use the renewal equation (∗) to show

(i) R(∞) = 1,

(ii) R(0) = 1− λ
cE[X1],

(iii) R(t) = R(0)(1 +M(t)),

where M(t) is the defective renewal function corresponding to F .
Hint: To show (ii) and (iii), solve the Laplace transform version of the renewal equation
(∗).

(c) Assume that the claim size has a second moment. The function R satisfies the renewal
equation with defect R = h+R ∗ F for all t > 0, with h = R(0). Assume that there exist
an α > 0 such that

λ

c

∫ ∞
0

eαtP [X1 > t] dt = 1

Use Smith’s theorem in the case of a renewal process with defect to prove

1−R(t) ∼t→∞
e−αt (c− λE [X1])

αλ
∫∞
0 xeαxP [X1 > x] dx

.

In other words the no-ruin probability converges exponentially to 1, as the initial capital
goes to infinity.


