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Solution 3.1

(a)

For n € N set Y,, := > ", |X;| and note that the |X;| are i.i.d. and independent of 7.
Hence, we have by the monotone convergence theorem and independence of the X; and 7

E[|S, || = [i|sk|1 T—k}SE[iYkl(T:k)]
k=1

k=1
= f}E[ ZE YE[L (7 = k)]
— E[vi] (Zk]P’ ) = E[Vi]E[7] < oc.

Next, by independence of the X; and 7 we have a.s.
B[S, |r] =E[Sd)| = uk| =ur,
k=1 k=1

yielding the first assertion. The second assertion follows immediately from this by the
tower property of conditional expectations.

For all n € N we have

E[(Sn)?] = En: E[XiX;] = zn:E[X?] + i E[X;Xj]
ij=1 i=1 ij=1,i#j

=n(o? + p?) + n(n — p? = no® + n’u>.

Next, since (S;)? > 0, the conditional expectation E[(S,)?|7] is well-defined. By indepen-
dence of the X; and 7 we have a.s.

E[(S;)%7] = E[(Sk)*)|, _ =ko® +K°p*| =o't +pir
establishing the first assertion. By the tower property of conditional expectations we get
E[(S:)’] = E[E[(S)?|7]] = Elo*T + 7°] = oE[r] + p’E[r?).
Putting this together with the result from part (a), we get

Var(S,) = E[(S;)?] — E[S/]? = ¢’E[r] + p’E[r?] — p*E[r)?
= o*E[r] + p*Var[r].



Solution 3.2

(a)

For k € Ny denote by p** the k-fold convolution of u, where we agree that p*' = p and
u* := &y (the Dirac measure at 0). Fix t > 0 and B € B(R). Using that N; and (X)ken
are independent and N; ~ Poi(At), we have

0o 00 k
P(Z € B]=Y P[Z € B,N, = k] = ZP[ZX]- € B,N, = k]
k=0 j

o0 k
> [ZX eB} [N, = k] = > Wk (B) (Akt!) e, (1)

Next, fix t > 0 and u € R. Denote by ¢x the common characteristic function of the Xj.

Using that Ny and (Xj)ren are independent, the X; are i.i.d. and N; ~ Poi(\t), we have
by the tower property of conditional expectations and the exponential series

E [¢“#] =E [E [¢"? | N;]] =E [E [eiuzngﬂ ‘k NJ

s k
— E [@X(U)Nt] — Z W;:'))\t)e)\t _ egpx(u))\t,)\t

i
=)

— Mlex (u)—1) (2)

Denote by (Sk)ren the sequence of successive jump times of N. Then we have for all
0<r<t

Zy— 2, = (Zxkusk gt)) - (Zxkusk gr)) =Y Xl(r<Si <), (3)
k=1 k=1 k=1

Note that the above sums are for all w finite, and so the rearrangement is justified. Next,
fixt>0andlet 0 =tg < t;1 < ---<t, =tand wy,...,w, € R. Define the function
f:Rx(0,t] - R by

8) = iwjxl (tj_l <s< tj) . (4)

Note the following simple identity:

n

eif(x,s) 1= Z (eiwjl‘ _ 1) 1 (tj—l <s< tj) . (5)
j=1

Moreover, we have
o
ij = Ziy1) = > (X ). (6)
k=1

To simplify the notation, we may assume (after possibly enlarging the original probability
space) that there exists a sequence (Ug)gen of i.i.d. random variables which are uniformly
distributed on (0, t) and independent of (Xj)ren. Then for all m € N, by the order statistics
property of the Poisson process and by invariance of y ;" | f(X}, Sk) under permutations
of the indices, the conditional distribution of > ;" | f(Xk, Sk) given Ny = m is equal to the



distribution of >~} | f(Xk, Ux). Using this, the tower property of conditional expectations
and (5), we get

E [ei(zyzle(zfj_ztj—l))] =E |:ei220:1 f(kask)} - F [E {eiZio:l F(Xk,Sk) ‘NtH

_ i (At)me—)\tE _eiZi'il f(Xk,Sk) }Nt = m]

_ i A M [ D 105050 | N, = m]

-y AD)™ i [ f(Xk,Uk)}

_ i ()\t)me,,\tE 'eif(Xl,Ul)]m

M (E[el/ (X1.UD]—1) _ eAtIE[eif(XbUl)—l}
— ME[] ("I )1t <UL <t)]

= Mlj E[e 1 —1]E[1(tj—1 <U1<1))]

_ H oAti—tj—1)E[e™i¥1—1] _ H oAt —tj—1)(px (wj)—1) (7)
j=1 7j=1

Comparing this with (2) shows that Z has stationary and independent increments.

(c) It follows immediately from the definition that Z in this case is a counting process and
increases by jumps of size 1. Moreover, by part (b), Z has stationary and independent
increments. Therefore it remains to check that for all ¢ > 0, Z; is Poisson-distributed with
parameter pAt. Indeed, with the notation from part (a) we have

ox(u) = pe™ + (1 —p) =1+ p(e™ —1). (8)
Hence, by part (a) we have
E [eiuZz] — e)xt(npx(u)—l) — ep)\t(eiu_l)‘ (9)

But this is exactly the characteristic function of a Poisson-distributed random variable with
parameter pAt.

Solution 3.3

As showed during the lecture, P [T} > t] = P[N; = 0] = e for ¢ > 0. This implies that T} = S;
is Exp(\)-distributed and therefore almost surely finite.
Let ke Nand 0 < sp <t <so<tg <. <sp <t <oo. We get

Pls; <81 <t1,82 <82 <ta,..., 8, < Sk < 1)
=P [N;, =0,N;, — Ny, =1,Ny, — Ny, =0,Ny, — Ny =1,...,Ng, = Ny, =0, Ny, — N, = 1]

_ e—Asl)\(tl _ Sl)e—/\(t1—51)6—)\(52—t1))\(t2 _ Sz)e—x(tg—sz) e AMsk—tg-1) (1 _ e—)\(tk—sk)>

k—1

=\l (e_ksk — e_)‘t’“) l_[(tZ — 8;)

=1
e fle—1 t
:/ / / Nee= Mk dy dys . . . dyj.
Sk Sk—1 S1



We prove by induction that the .S;’s are P-a.s. finite.

Assume that S1,S5s,...,S,_1 are P-a.s. finite. In a similar way as above, we have
k—1
Pls; < S1 <ty,80 < So < to,...,s, < Sg] = A le Ao H(ti — 5i),
i=1

which converges to 0 as s goes to co. So we have
P[Sl <5 < 11,82 < Sy < to, ..., 81 < Sp_1 < tkfl,Sk = OO] = 0.

Set s1 =0, t; = s;4q fori € {1,...,k—2}, let t;_; go to oo, and summing over (sg, 53, . .., sp_1) € QF2
we get
PO0< S <S8 <...<Sk1 <00,5; =00]=0.

Since S1,S59,...,5;_1 are P-a.s. finite by induction hypothesis, we conclude that S is P-a.s.
finite. Therefore all the S;’s are P-a.s. finite.

The sets (s1,t1] X (s2,t2] X ... X (S, tgx] such that 0 < 51 <t <so <t <o <5 <t < 00
generate the Borel o algebra on {(z1,...,23) € R¥ | 21 < 29 < ... < 21}. Therefore the density
of the distribution of (S, Se,...,Sk) is given by

f(S1,Sg,...,Sk)(51a 89, ..., Sk) = \eMury (81 < sy <... < Sk) .

The proof that the T;’s are i.i.d. Exp()A)-distributed was done in the lecture.



