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Solution 4.1
Let t > 0.
(a) For all x > 0:
Ply > z] =P[Sn,41 >t + 2] =P[Npyy — Ny =0 =P [N, = 0] = exp (—Az) .
Thus, the distribution function F,, of v; is given by
F,(x)=1(x >0) (1 —exp(—Az)).
For all x > 0:

t)P[Nt — Ni—y = 0]
<t)P[N; =0]=1(0<z <t)exp(—Azx) .

Ploy 2 2] =P[Sy, <t—2]=1(0<2x <
—1(0<z

This implies
Fs(x)=10<z<t)(l1—exp(—Ax))+1(x>1t).

(b) Forall z,y > 0:

Plyvp>z,0, 2y = 1(0<y<t)P[Sn,+1 >t+x,SN, <t—1y]
= 1(0<y <t)P[Nyya = Ne—y =0
= PNy — N =0]1(0<y <t)P[Ny — Ny = 0]
= Ply>a]P >
This implies that 7+ and 6, are independent. Hence, Py, < z,6; < y] = Fy,(x)Fj,(y).
(c) The distribution function Fj, is given as the convolution of F,, and F,:
Fg,(z / F,, (z —y)dFs,(y) .
For 0 <z <t

Fs,(x) = /0 (1 —e @™ Wdy =1 — exp (—Az) (1 + Az).

= /0 (1 —exp (=A(z —y)))Aexp (=Ay) dy + (1 — exp (=A(z — 1)) exp (= At)
=1—exp(—Az) (1+ \t).



(d) Fp, has the density
fa () =1(0<z <t)Nxexp (—Az) + 1 (2 = t) \(1 + M) exp (—Az) .
Hence,
o0 2 —exp (=Mt
e
0
It follows for ¢ > 0

E[] > - =E[T}],

>| =

and 5
Jim E[§] = = = 2E[T}].

We discover that the interval in which ¢ falls is not a "‘typical"’ interval. To give a short
explanation note that the probability of ¢ > 0 lying in a large interval is larger than the
probability of ¢ being contained in a short interval. See section 5.2 in Queueing systems by
L. Kleinrock.

Solution 4.2

Let R(t) = fg asds = §t?. Then we can make the following time change
(W <t} = {Ni > n} = {Nggy > n} = {W,, < R(t)},

where (N;)¢>0 is a homogeneous Poisson process with rate 1. We know that W, is Gamma(n, 1)
distributed (as it is the sum of n i.i.d. Exp(1) random variables), hence

P[W,, < t] = P[W, < R(t)]

R(t) 1
= / 5" leT4ds
0 (n—1)!
| n o
= / 2 (g> §211e=55% gs.

For 0 < s1 <t1 < s9 <ty we have
]P)[Sl < W1 <t1,82 < WQ < tg] = IP)[N51 = 0,]\7751 — .NVS1 = 1,N52 — Nt1 = 0,Nt2 — N52 > 1]
= (e7R2) — e=RE)) (R(t1) - R(s1))

/ p(y1)p(y2)dy1dys2,
81<y1<t1,52<y2<t2

using that (N¢)¢>0 has independent increments and the fact that Ny — Ny for 0 < s < ¢ is Poisson
distributed with parameter (R(t) — R(s)).
The density of the joint distribution of (W7, Ws) is given by

Flyn,p2) = e B0 p(y1)p(12)1 (0 < 1 < 32) = @Pyryoe 351 (0 < y1 < o).
Let h(tl,tQ) = (tl,tl + tg). Then we obtain
]P)[(Wl, Wy — Wl) S A] = P[(Wl, WQ) S h(A)]

Z/ f(y1, y2)dyrdyo

h(A)

=/ foh(y,y2)dy1dy2
A

= /Aa2y1 (11 + yg)efg(yﬁyzﬁl (y1 > 0)1 (y2 > 0) dy1dys.



Hence the density of (W1, Wy — W7) is given by

fova wa—wny (W1, y2) = Py (1 + yo)e T W)L (y) > 0)1 (yo > 0)
= (ayle_%yfl (y1 > O)) (a(yl + yg)e_%yg_o‘ylml (y2 > 0)) .

density of W1 conditional density of Wy — Wy given Wy

In particular Wy and W5 — W; are not independent (contrary to the homogeneous case).

Solution 4.3

(a) First we will show that P-a.s. there exists ng such that for all n > ng we have

(1+¢)

T, <
=

log(n/A).

Set By, := {T, > 1= log(n/A)}, then

P[E,] = exp <—>\(1 Ie) log(n/)\)) - <A>H€,

n

hence ), P[E,] < oo and therefore by Borel-Cantelli we obtain P[limsup,,_,., £,] = 0.
This means that for P-a.a. w there is ng(w) such that for all n > ng(w) we have

(1+¢)

T; <
no(gg}één bw) <

max nlog(k/A) = log(n/\).

>
S
(=)

£
A
o
A

Furthermore we can choose nj(w) > ng(w) such that

(1+¢)
max Tp(w) < N

max log(n )/,

because log is a monotone function increasing to infinity. Therefore P-a.s. there is n; € N,
such that for all n > n; we have

(1+¢)
T <
max Ti(w) < —

log(n/\).

Ne+1
t

(b) We have lim sup,_, o, = limsup,_, % and

N; k
lim sup ~! <lim sup L —lim Sup — = A,
t—o00 t—o00 N¢ k—o0 S

where we used in the last step that by the strong law of large numbers we have Sy /k — %
almost surely as k — oco. This implies that P-a.s. there is tg such that for all ¢ > tg we

have
Ny +1
t

< (I4+¢e)A

(¢) P-a.s. for ¢ large enough we have

1
L; < max 1T < (;tg)log(

Ne+1 < (1+¢)
T 1<k<Ni+1 -

5 ) log(t(1+¢€)),

Ly < (1+¢)

gl < - As e > 0 was arbitrarily chosen this yields the claim.

which yields lim sup,_,



