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Solution 4.1

Let t > 0.

(a) For all x > 0:

P [γt > x] = P [SNt+1 > t+ x] = P [Nt+x −Nt = 0] = P [Nx = 0] = exp (−λx) .

Thus, the distribution function Fγt of γt is given by

Fγt(x) = 1 (x > 0) (1− exp (−λx)) .

For all x > 0:

P [δt > x] = P [SNt ≤ t− x] = 1 (0 ≤ x ≤ t)P [Nt −Nt−x = 0]

= 1 (0 ≤ x ≤ t)P [Nx = 0] = 1 (0 ≤ x ≤ t) exp (−λx) .

This implies
Fδt(x) = 1 (0 ≤ x < t) (1− exp (−λx)) + 1 (x > t) .

(b) For all x, y > 0:

P [γt > x, δt > y] = 1 (0 ≤ y ≤ t)P [SNt+1 > t+ x, SNt ≤ t− y]

= 1 (0 ≤ y ≤ t)P [Nt+x −Nt−y = 0]

= P [Nt+x −Nt = 0]1 (0 ≤ y ≤ t)P [Nt −Nt−y = 0]

= P [γt > x]P [δt > y] .

This implies that γt and δt are independent. Hence, P [γt ≤ x, δt ≤ y] = Fγt(x)Fδt(y).

(c) The distribution function Fβt is given as the convolution of Fγt and Fδt :

Fβt(x) =

∫
R
Fγt(x− y)dFδt(y) .

For 0 ≤ x < t:

Fβt(x) =

∫ x

0
(1− e−λ(x−y))λe−λydy = 1− exp (−λx) (1 + λx) .

For x > t:

Fβt(x)

=

∫ t

0
(1− exp (−λ(x− y)))λ exp (−λy) dy + (1− exp (−λ(x− t))) exp (−λt)

= 1− exp (−λx) (1 + λt) .



(d) Fβt has the density

fβt(x) = 1 (0 ≤ x < t)λ2x exp (−λx) + 1 (x > t)λ(1 + λt) exp (−λx) .

Hence,

E[βt] =

∫ ∞
0

xfβt(x)dx =
2− exp (−λt)

λ
,

It follows for t > 0

E[βt] >
1

λ
= E[Ti] ,

and

lim
t→∞

E[βt] =
2

λ
= 2E[Ti] .

We discover that the interval in which t falls is not a "`typical"' interval. To give a short
explanation note that the probability of t > 0 lying in a large interval is larger than the
probability of t being contained in a short interval. See section 5.2 in Queueing systems by
L. Kleinrock.

Solution 4.2

Let R(t) =
∫ t
0 αsds =

α
2 t

2. Then we can make the following time change

{Wn ≤ t} = {Nt ≥ n} = {ÑR(t) ≥ n} = {W̃n ≤ R(t)},

where (Ñt)t≥0 is a homogeneous Poisson process with rate 1. We know that W̃n is Gamma(n, 1)
distributed (as it is the sum of n i.i.d. Exp(1) random variables), hence

P[Wn ≤ t] = P[W̃n ≤ R(t)]

=

∫ R(t)

0

1

(n− 1)!
sn−1e−sds

=

∫ t

0

1

(n− 1)!
2
(α
2

)n
s2n−1e−

α
2
s2ds.

For 0 ≤ s1 ≤ t1 < s2 ≤ t2 we have

P[s1 < W1 ≤ t1, s2 < W2 ≤ t2] = P[Ns1 = 0, Nt1 −Ns1 = 1, Ns2 −Nt1 = 0, Nt2 −Ns2 ≥ 1]

=
(
e−R(s2) − e−R(t2)

)
(R(t1)−R(s1))

=

∫
s1<y1≤t1,s2<y2≤t2

e−R(y2)ρ(y1)ρ(y2)dy1dy2,

using that (Nt)t≥0 has independent increments and the fact that Nt−Ns for 0 ≤ s < t is Poisson
distributed with parameter (R(t)−R(s)).

The density of the joint distribution of (W1,W2) is given by

f(y1, y2) = e−R(y2)ρ(y1)ρ(y2)1 (0 < y1 < y2) = α2y1y2e
−α

2
y221 (0 < y1 < y2) .

Let h(t1, t2) = (t1, t1 + t2). Then we obtain

P[(W1,W2 −W1) ∈ A] = P[(W1,W2) ∈ h(A)]

=

∫
h(A)

f(y1, y2)dy1dy2

=

∫
A
f ◦ h(y1, y2)dy1dy2

=

∫
A
α2y1(y1 + y2)e

−α
2
(y1+y2)21 (y1 > 0)1 (y2 > 0) dy1dy2.



Hence the density of (W1,W2 −W1) is given by

f(W1,W2−W1)(y1, y2) = α2y1(y1 + y2)e
−α

2
(y1+y2)21 (y1 > 0)1 (y2 > 0)

=
(
αy1e

−α
2
y211 (y1 > 0)

)
︸ ︷︷ ︸

density of W1

(
α(y1 + y2)e

−α
2
y22−αy1y21 (y2 > 0)

)
︸ ︷︷ ︸
conditional density of W2 −W1 given W1

.

In particular W1 and W2 −W1 are not independent (contrary to the homogeneous case).

Solution 4.3

(a) First we will show that P-a.s. there exists n0 such that for all n ≥ n0 we have

Tn ≤
(1 + ε)

λ
log(n/λ).

Set En := {Tn > (1+ε)
λ log(n/λ)}, then

P[En] = exp

(
−λ(1 + ε)

λ
log(n/λ)

)
=

(
λ

n

)1+ε

,

hence
∑

n P[En] < ∞ and therefore by Borel-Cantelli we obtain P[lim supn→∞En] = 0.
This means that for P -a.a. ω there is n0(ω) such that for all n ≥ n0(ω) we have

max
n0(ω)≤k≤n

Tk(ω) ≤
(1 + ε)

λ
max

n0(ω)≤k≤n
log(k/λ) =

(1 + ε)

λ
log(n/λ).

Furthermore we can choose n1(ω) ≥ n0(ω) such that

max
1≤k≤n0(ω)

Tk(ω) ≤
(1 + ε)

λ
log(n1(ω)/λ),

because log is a monotone function increasing to in�nity. Therefore P-a.s. there is n1 ∈ N,
such that for all n ≥ n1 we have

max
1≤k≤n

Tk(ω) ≤
(1 + ε)

λ
log(n/λ).

(b) We have lim supt→∞
Nt+1
t = lim supt→∞

Nt
t and

lim sup
t→∞

Nt

t
≤ lim sup

t→∞

Nt

SNt
= lim sup

k→∞

k

Sk
= λ,

where we used in the last step that by the strong law of large numbers we have Sk/k → 1
λ

almost surely as k → ∞. This implies that P-a.s. there is t0 such that for all t > t0 we
have

Nt + 1

t
≤ (1 + ε)λ.

(c) P-a.s. for t large enough we have

Lt ≤ max
1≤k≤Nt+1

Tk ≤
(1 + ε)

λ
log

(
Nt + 1

λ

)
≤ (1 + ε)

λ
log(t(1 + ε)),

which yields lim supt→∞
Lt
log t ≤

(1+ε)
λ . As ε > 0 was arbitrarily chosen this yields the claim.


