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Solution 6.1

For k € N let Uy, denote the distance between the (k + 1)st and the kth vehicle queueing at the
gate. Then for all x > 0,

00
Nx =1+ Z 1{2?:1 Lj—i-Uij}'
k=1

Hence, (N — 1);>0 is a renewal process with interarrival times T = Ly + Ug. Note that
E[Ty] = E[Ly] + 1 and that by assumption E[L;] < co. The strong law of large numbers for

renewal processes implies

Solution 6.2

Lemma 2 (iii) form class yields M (z) = 15(;&) for every t > 0. Using

>
xT

M(z) = / e " dM(u) = c/ e dy = &
0 0
we derive

T 14+ M(z)  wfe+

On the other hand, the Laplace transform of an Exp(c) random variable is given by

e o™ dy = Because the Laplace transform determines the distribution, the in-

0 Gt
terarrival times are Exp(c) distributed. We have a counting process starting at 0, with jump of
size 1 P-a.s. The interarrival time are P-a.s. finite, independent and exponentially distributed
with same parameter. By the Poisson process characterisation theorem, the renewal process is a

Poisson process with rate c.

Solution 6.3

a) Let By,...,Br € B(R) and A € F;. Then we have by independence of (T}, )ren and Fy,



for all n € N, the fact that the T}, are i.i.d. and the law of total probability

k
P[S1 € By,..., 8 € By, A|=P[Tr11 € B,..., Y Tryj € By, Al
j=1

[e's) k
:ZP[TT-FI eBl?"'?ZTT+j € BkaAm{T:n}]
n=0 7j=1

o) k
= P[Thi1 €Bi,..., Y Tnyj € Br, An{r =n}]

n=0 j=1
[eS) k
= P[Twi1 € Bi,..., > Toyj € Bl x PILAN {7 = n}]
n=0 j=1
o) k
=) P[Ty €By,...,» T; € By x PIAN{r =n}]
n=0 j=1

k
=P[Ty € By,..., Y _Tj € By] x P[4]
j=1
=P[S) € By,...,S € B] x P[4]. (1)

For A = Q this yields that (gk)keN is equal in distribution to (§k)k€N. Using this, we get
for A € F; again arbitrary

P[S1 € Bi,...,S: € By, A| =P[S1 € By,...,S; € By] x P[A]
=P[S, € By,..., S, € By] x P[4], (2)

which shows that (gk)kEN and F, are independent.

b) Since 77 > 0 P-a.s., it follows that on a set of full probability, N is a counting process
starting at 0 and increasing by jumps of size 1. In particular, we have

Sy =inf{t > 0| N, =k} P-as., keN, (3)
and Ng, =k P-a.s..

Using these properties, it follows immediately that on a set of full probability, N(7) is a
counting process starting at 0 and increasing by jumps of size 1, too. Denote by (S’IET)) keN
the sequence of successive jump times of N(7). Using the notation from part a), it follows
immediately from the definition of NV (1) and the above that S,(;) = Z?zl Tryy = §k P-a.s.

for all k € N. Set S§7” := 0 and 77 := S\ — S 'k € N. Then it follows from part

a) that (T,E,T))keN is equal in distribution to (T%)kreny and independent from F.. Since a
renewal process is characterised by its interarrival times, N(7) is independent from F;.

Solution 6.4

a) Set ey(t) := P[E; < y|. Then we have e, (t) = 1 — Z(,)(t). Moreover, it follows from the
lecture that e, satisfies the renewal equation

ey(t):F(t—l—y)—F(t)—i—/O ey(t —s)dF(s), t>0. 4)



Using this, we get
Zog)(t) =1—ey(t) =14+ F(t) - F(t+y) + /0 (1—ey(t —s))dF(s) — F(t)
=1-F(t+y)+ /t Zy)(t—s)dF(s), t>0. (5)
0

We have for z,y > 0 and t >

{Ay >z, B >y} ={Sn, <t —2,Sn41 >t +y}
={N; = Ni—z,Sn,41 >t +y}
={Nt = Nt—2,SN,_o+1 >t +y}
={Sn_.+1> ([ —z)+2+y}
={E;—» >z +y}. (6)

This together with the definition of Z(, ,) implies the claim.

For x > 0 define hy(t) := (1 — F(t + 7))l g;>0). Then h > 0 is decreasing and satisfies

/0 h$(t)dt:/() (1—F(t+:c))dt§/0 (1— F(t))dt
:/ P[S, > f]dt = E[Sy] = 1 < oo, (1)
0

Hence h, is directly Riemann integrable as shown in the lecture.

Putting the results of part a) and b) together with Smith’s key renewal theorem, we get

tlif& Z(x,y) (t)= tli{& Z(O,ery) (t—x) = tli>nolo Z(O,ery) (t)

1 [ee] 1 o0
= / hayty(u)du = / (1 - F(u))du. (8)
HJo B Jzt+y
For z,y > 0 set Goo(,y) := % ;iy(l — F(u)) du. Note that
1 [ I
G(0,0) = / (1—-F(u))du===1. 9)
K Jo H

Moreover, for z,y € R define the function G4, by

Goo(—z,—y) ifx,y <0,
Goo(—2,0) ifx <0,y >0,
Goo(0,—y) ifx>0,y<0,
1 if x,y > 0.

Goo(z,y) = (10)

It follows directly from the definition of G that G« is [0, 1]-valued and continuous (and a
fortiori right-continuous). In addition, it is not difficult to check that for (z1,y1), (z2,y2) €
R? with z; < x9 and y1 < y2 we have

Goo(22,92) — Goo(1,Y2) — Goo(w2,y1) + Goo(21,91) > 0. (11)

Moreover, we have G4 (0,0) = 1 and lim g, ) (—o0,—o0) Goolz,y) = 0.

In conclusion, G« is the distribution function of a two dimensional random vector sup-
ported on (—oo,O]j. Put differently, there exists a random vector (A, Foo) valued in
[0, 00)2 such that G is the distribution function of (—Aw,, —Es) and we have

Goo(z,y) =P[Asc > 2, Eso > y|, z,y>0. (12)



For t > 0, denote by Gy the distribution function of (—A;, —E;) and define the function
Gy on [0,00)% by Gy(z,y) := P[A; > z,E; > y]. Note that Gy and G; have the same

relationship as G, and G .

We proceed to show that (A¢, Fy) converges in distribution to (Aso, Exo) as t — oo. This
is clearly equivalent to showing that (—A;, —E;) converges in distribution to (As, Foo) as
t — 0o, which in turn by continuity of G, is equivalent to showing that

tli)rn Gi(z,y) = Goo(z,y) for all (z,y) € R% (13)
Using the relationship between G; and G; and Go and Gu, respectively, the latter is
equivalent to establishing that

tli)m Gi(z,y) = Goo(z,y) for all z,y > 0. (14)

Observe that Z, ,(t) = Gi(x,y+) for all t,x,y > 0, where Gy¢(x, y+) = lim,, Gi(x,u). By
(8) it follows that
tli)m Gi(z,y+) = Goo(z,y) for all z,y > 0. (15)

Using continuity of G, monotonicity of G¢(z,y+) in y and lim,y, Ge(z, ut) = Ge(z,y), it
is an easy exercise in analysis to derive (14).

Ay and F, are independent if and only if for all x,y > 0 we have
PlAs >z, Fo > y] = P[Ax > z|P[Es > y. (16)

Define the function g by g(z) = ifzoo(l — F(u))du, z > 0. By part ¢) it follows that for
all x,y > 0 we have

PlAx > 2, B >yl = G(2,y) = g(z + y). (17)

In particular Ao, and F, are independent if and only if for all 2,y > 0 we have

9(z +y) = g(z)g(y). (18)
As g is continuous, this functional equation has the unique solution g(z) = e“*, where
a < 0, since lim,_, g(z) = 0. Moreover, we know that
1 o0
e =g(z) = / (1-F(s))ds, z2>0 (19)
s
Differentiating both sides yields
1
ae” = ——(1—-F(z)), =z>0. (20)
1

Hence, we have F(z) = 1 4+ pae®. Plugging in z = 0 shows that a > —1/u. Hence there
exists A € (0,1/u] such that

F(t) = (1= Aue ) gy = (1= M) X Loy + Au(l —e Mgy, 200 (21)

In conclusion, A, and E, are independent if and only if F' is the mixture of a Dirac-
distribution at 0 and an exponential distribution with parameter A € (0, 1/u] with weights
(1 — M) and Ap, respectively.

Remark: For A =1/u, N is a Poisson process with parameter 1/p.



