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Solution 7.1

The stochastic processes described in a) and b) are Markov chains, while the one in ¢) is not.
Let Y,, denote the number which shows up in the n-th roll.

(a) We have X, = (Xy;—1 + 1) Iy, <6). Thus, (X )nen is a Markov chain with state space No.
For i,j € {0,1,2,...}:
if j =0,

=

rij=19 o ifj=i+1,
0 otherwise.

(b) Then X,, = max{X,,—1,Ys}. Hence, (X,,)nen is a Markov chain with state space {1,...,6}.
We obtain the following transition probabilities for 1 < 4,5 < 6:

0 ifj<i,
rij =1 & ifj=i
& oifj >

Furthermore, noting that r; j(n) = P[max{Y1,Ya,...,Y,} = j | Xo =] for j > i, we have
0 if 7 <1,

i

rign) =14 (§)" ifj=i
(%)n - (%)” it >

(c) The transition probabilities at time n depend not only on X,, but also on X, _;. For
example,

6 5 1
P[Xy = 6|X5 = 6] = P[¥s = 6| X3 = 6] + P[Ys < 6,Y; = 6 X3 = 6] = = + = =
<1=P[X;=6|X3=06,X,=1].

Therefore, this is not a Markov chain.

Solution 7.2



(a) The transition matrix is given by

020300000
1 1 1
032030000
1 1
03 0003 000
1 0002%04% 00
1 1 1 1
1 1 1
003104000 3
1 1
00040004 0
0000O0TG+0O04+ 0 %
000O0O0TG3FO0Z3 0

(b) Fixn € N. If X,, =0, then X,,41 = 1 and if X, = N then X,,;; = N —1. If X,, =1,
where i € {1,..., N — 1}, then we have X, 11 € {i — 1,4,i + 1} with

Z'2

Tii—1 = mv
z'(N — z) + (N — z)z 2i(N — z)
Tii = N2 =T N2
(N —4)?
Tii+1 = T
Thus the transition matrix is
0 1 0 - 0
1 2(N-1) (N-1)2 0 .
N2 N2 N2
0 4 4(N—-2) (N-2)2
N2 N2 N2
(N-2)2  4(N-2) 4 0
N2 N2 N2
0 (N-1)2 2(N-1) 1
N2 N2 N2
0 0 1 0

(¢c) We have P[Y,, = 1] = pand P[Y,, = 0] = 1—p =: ¢, n € N. If we identify X,, with
the corresponding binary number Zle Y;,+:2F7 the state space of (X, )nen is given by
{0,1,2,...,2% —1}. Using this representation of X,, we have

k

k

k—i k—i+1

Xnj1= Y12 = Vo + ) Vg2
i=1 i=2

k

=Yntkt1 + Z Vo2 = ¥, 0128 = Vg + 2X, — Vi 2P
i—1

= Ypt+k+1 + 2X7L mod Qk

Hence, we have

X _)2X,+1 mod 2k with probability p,
nH 2X,, mod 2* with probability q.



The corresponding transition matrix is thus

\
g p 0 0 0 O
0 0 g p 0O
0 00 0 qp
qg p 0 0
R = 0 0 g p 2F rows and columns.
g p 0 0 0 O
0 0 g p 00
0 00 0 qop
qg p 0 0
0 0 g p ),

Solution 7.3

(a) Let f € L>®(F). There exists K > 0 such that ||f||.c = K. Let n € N. By definition of
R(n) and the conditional expectation, we have

JE[f(Xn) | Xpor =2 < K, forxze Eif PX,, 1 =2] >0,
(B(m)]) (@) := {f(:n) <K for z € E if P[X,,_1 = 2] = 0.

The choice of f was arbitrary. Then, by definition of the norm of an operator, we have

IR(n)[[ = sup  [|R(n)f|| <1
feL=(E)|lflI=1

(b) (Xn)nen is by definition a discrete time Markov chain if and only if for all n € N and all
bounded functions f : F — R we have

E[f(Xns1) | Xo,- ... Xn] = E[f(Xns1) | Xn] P-acs. (1)

Therefore, to establish both directions it suffices to show that (R(n + 1)f)x, is a version
of the conditional expectation E[f(Xp41)|Xy] for all n € N and all bounded functions
f:E —R. Fixn € N and a bounded function f : E — R. Since F is at most countable
and £ = 2P any function £ — R is measurable, which implies that (R(n + 1)f)x,
is o(X,,)-measurable. To establish the averaging property, let A € o(X,). Since F is
countable, we may assume without loss of generality that A = {X,, = x} for some z € E.
If P[X,, = z] > 0, we have

EMAELf (Xni1) [ Xnl] = E[Laf (Xnt1)] = Elyx, =0} f (Xnt1)]

=Y P[Xp =z, Xpi1 =yl f(y)
yeE

=) P[X, = 2|P[Xn 11 = y| Xy = 2]f(y)
yek



and if P[X,, = 2] = 0, we have
ELAE[f(Xn41)|Xn]] = E[Laf(Xpnt1)] = E[L(x, =} [ (Xp41)] = 0

=E[l{x, =2} (R(n+ 1) f)z] = E[lyx, -2y (R(n + 1) f)x,]
E[la(R(n+1)f)x,]- (3)

(c) First, suppose that (X,,)nen is a discrete time Markov chain. We prove the stated equation
by induction on n. The basis n = 0 is trivial. For the induction hypothesis assume that
we have shown the claim for n € N. Let zo, ..., 2,41 € E. Using part (b) with f =1, _,,
the averaging property of conditional expectations and the induction hypothesis, we get

P[Xo =20, ., Xnt1 = Tny1] = E[l{x)=a0} X -+ X Lix, =g} f (Xz41))]
E[lxg=zoy X = X Lyx, =1 f(Xat1) | Xoy - - - Xan]
Mixo=a0} X -+ X Lixp =,y EIf (Xat1) | Xo, - - Xa]]
Mixo=a0} X -+ X Lixp=an 3 (R(n +1)f)x,]
[T xo=ao} X = X Lix, =2, } BXp w0 ys (0 + 1))
Lixo=zo} X X Lix, =01 Rap iz (0 + 1))
Mixo=a0} X -+ X Lixp=an} Ranpar (R + 1)
[(Xo==x0,..., Xpn =xp|Repy s (R + 1)

= PaogRagei (1) X - X Ry 1 0 ()R g (1), (4)
Conversely, suppose that the stated condition holds. By part (b) and Dynkin’s lemma

using that E is countable, it suffices to show that for all xg,...,z, € E and all bounded
functions f : E — R we have

B[l xo=ao} X+ X Lix =z} [ (Xna1)] = B[l {xg=pg} X - X Lyx, =0} (R(n 4+ 1) f)x,] (5)

Again, by Dynkin’s lemma using that E is countable, we may assume without loss of
generality that f = 1,, ., for some z,41 € E. Fix zq,...,2,41 € E. Then we have

El{xo=z0) X+ X Lix,=an} [ (Xnt1)] = P[Xo = 20, ..., Xnt1 = Tny1]
= agRag,z1 (1) X -+ X Ry 2, (R) Rayy 0 (0 + 1)
= [P)[XO = X0y -- ,Xn = In]Rxme_l (n + 1)
=El{xo=zo} X X Lix, =2, } Banon s (04 1)]
= E[]l{Xt):fro} Xoeoe X ]l{Xn=zn}Rmen+1 (n+1)]
= E[l{xy=ge} X -+ X Lix, =z, (R(n + 1) f)x,]. (6)

(d) Fix n € N. Using part (c), we get

Xn)] = Z Z P[Xo = zo,..., Xn = xn)f(zn)

zo€EE Tn€Xn

= > weRuga (1) X -+ X Ry 0, (0) f ()

ro€ER Tn€Xn
= pR(1R(2) - R(n)f. (7)

(e) First, suppose that there exists a transition matrix R such that for alln € Nand ally € E
we have

)

Ryy=Ryy(n+1) if PX, =z]>0. (8)
But this implies that for all y € Y we have

(Rl,)x, = Rx,y = Rx, y(n+1) = (R(n +1)1,)x, P-as. (9)



By Dynkin’s lemma it follows that for all bounded functions f : F — R we have
(Rf)x, = (R(n+1)f)x, P-as. (10)

Since (R(n+1)f)x, = E[f(Xn+1) | Xo, ..., Xn] P-a.s., we may conclude that (X, )nen is a
homogeneous Markov chain.

Conversely, suppose that (X, )nen is a homogeneous Markov chain. Then there exists a
transition matrix R such that for all n € N and all bounded functions f : E — R we have

E[f(Xni1)| Xo,. ... Xn] = (Rf)x, P-as. (11)

Let n € N, z,y € E with P[Xy = ] > 0. Then by the averaging property of conditional
expectations we get with f =1,

_ E[]I{Xn=x}(R]ly)w] . E[H{anx}(Rf)Xn}

Ry = (Rly)a PX,=z] P[X,=ax]
~ Ellx, =3 f(Xn)] — PXn =y, X = 7]
P[X,, = z] - P[Xy, = z]

=PXnt1 =y | Xp =2] = Ryy(n+1)
(12)

This establishes the claim.

Solution 7.4

(a) First, note that after the first jump either a ruin occurs, or the risk process f, continues
as if started at time O from initial state (capital) = + ¢S; — X7 > 0 (since X; are i.i.d.
and independent of arrival process). Denote by H the distribution function of Si, so that
dH(s) = Xe *ds. By the law of total probability, conditioning on the time S; and size
X, of the first jump, we have

R(z) =P[f,(t) >0 for all t > 0,2 + ¢Sy — X1 > 0]

= / P[frtcs—y(t) > 0 for all t > 0] dG(y) dH(s)
(s,y):x+cs—y>0}

x—l—cs
/ / R(z +cs —y)he ™ dG(y)ds

by independence of X7 and S7. Substitute u = x + cs to obtain

/ / —)\(u D/e 4G(y) du.

Multiply both sides by e~*%/¢ and rearrange:

e A/CR(z) = % /u : e~ Au/e < /y :) R(u—y) dG(y)> du.

The right-hand side is the integral of a bounded function, thus it is continuous on (0, 00),
and hence so is the left-hand side, in particular R. Then, in turn, the integrand on the
RHS is continuous, hence the integral is differentiable. Differentiating both sides w.r.t. x
yields

)\ xr
e MR () — Ee’M/CR(x) _ _Agare / R(z —y) dG(y). (13)
0

C



Using R(z) = [ R'(u)du+ R(0) and Fubini, we can rewrite the integral

| Ra=wace = [ [ R auaG) + ROPL <4l
_ /0 / R'(« — u) du dG(y) + RO)P[X, < 1]

= /0 (/0 dG(y)> R'(z — u)du+ R(0)P[X; < z]
- / R'(z — u)P[X1 < u]du+ R(0)P[X; < ). (14)
0

Rearranging (13) and plugging in (14) yields

R@) =2 Ra)~ % [ R —y) 60

A

-2 (/0 R (u) du + R(0) — /Ox R(z — wP[X1 < u]du — RO)P[X; < x])

= 2B[Xy > 2] R(O) + /0 TR~ P{X) > ) du

which is the renewal equation we wanted to obtain.

(b) (i) We compute,

_ N,
R(z)=Plz+ct > ZXi’ Vt]
- i=1

=Pz +cSy > > X, Vn}
- 1=1
=P wZZX,-—cSn, Vn}

i=1

=P azzsup{ZXi—cSmnENH.

=1

If we show that sup { -7 | X; —cS,, n € N} < oo a.s., then it follows that R(co) = 1.
Now

E[XZ — C(SZ — Si—l)] = E[Xl] — C/)\ < 0,

so, by the strong law of large numbers,

n n

Z(XZ- —c(S; = Si—1)) = ZXi — ¢Sy, — —00  a.s., n— 0o,
i=1 i=1

thus a finite maximum exists a.s.

(ii) We define ¢ and 6 as the Laplace transforms of the r.v. X; and the function R’
respectively:

u) = E[e™ X1 u) = ooe*“x '(z) dz.
o) =B, 0w = [ R @)



Using the formula [;° e (1 —G(z))dz = (1— G(u))/u we obtain the Laplace trans-
form version of the renewal equation computed in (a),

Ow) = 2RO)(1 — o(w)/u-+ (1~ 6(u))6(u) /u.
Solving for 6 yields

CARO)(1 - 6(u)/u
W) = AT olu)) fu (15)

Notice that lim, o(1 — ¢(u))/u = E[X;] (by MCT, since (1 —e ™ *)/u 1 = as u |

0 Vx > 0). Hence,
)\E[Xl]R(O)
lim 0 (u !
lirn 6 (u / Bz c— \E[Xq]

But since also [, R'(z) dz = R(c0) — R(0), we can now solve

R@)zl—%ﬂXﬂ (16)

(iii) Notice that (15) can be written as a sum of a geometric sequence,

o) =R > (20 o))

n=1
hence, using the properties of Laplace transform,

o

R'(t) = R(0) Y (F')™(1).

n=1

Thus

R(t) = R(0) + /R%mu

mo)(1 /ZF’*“ )
= R(0)(1 + M(t)

as required. We used in the last inequality, that for a distribution with density, the
density of the n-th convolution is the n-th convolution of the distribution’s density.

(c) Define the two functions

F(t) — F()

I F(o0) ™1 (t > 0)

F;@)zmété“chwﬂ(t>(D, ho(t) = R(0)

F, is non-arithmetic because F'is. —h, is non-increasing, non-negative and we have

Am—m@Mﬁ:‘mmA(/w/mPM1>MMMt
= / / [X1 > u] dtdu

_(1—F<o@>/o wh

~___R(O)x
C2c(1- F(oo))IE [xi] <oc



By the criterion in the lecture h, is DRI.
Smith’s theorem for renewal equations with defect yields

- v RO) * Flo) ~ FIO) o
A= RO = o P Iy > alda / 1= F(e) ©

The right-hand side can be simplified to

/OOO F(o00) — F(t)e*dt = /OOO /too dF (u)e®dt
(u)

Replacing in the previous equation and using the value of R(0), we get

e~ (c — AE[X1])
1= R(t) ~pse —— .
()~ al [z P [Xy > x]d




