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Solution 8.1

Assume that (Xp,)nen is the canonical Markov chain on E = {A, B,C, D, E, F'} with transition
matrix

0O p g or 00
q 0 p 0 » O
| »p ¢ 00 0 r
E=1000100
0 00O0T1O0
000 O0O01

Since D, E and F are absorbing states of (X,)nen,, we have to calculate pa p, pa,r and pa p.
Note that due to the symmetry of the graph, we have

PB,D = PAF,
PC,D = PAE- (1)
To calculate pa,p, we consider the first step X7. Observe that the chain either jumps to state
D with probability r, or to state B with probability p, or state C' with probability q. If X1 = D
the chain stays at D, if X1 = B, the probability that the chain ends up in state D is pc p, and
if X1 = B, the probability that the chain ends up in state D is pg p. Therefore we obtain the
equation
pPA,D =T+ PpPB.D + 4pC,D-
Formally, this can be proved using the simple Markov property (Proposition 3.3):
pap =Pa[Hp < oo]
=Pa[Hp < 00, X1 = D] +P4[Hp < 00,X1 = B| + PA[Hp < 00, X} = C]
=Pa[X1=D]+Pa[Hpobh <o0,X; =B]+Pa[Hpob <oo0,X;=C]
=r+E4 []l{HDo91<OO}]l{X1=B}] +Ea []l{HD091<OO}]l{X1:C}]
=7 +Ea[Ea[Lmp00,<oo) Lix, =8y | F1]] + Ea[Ea[lim,00, <00} Lixi=0y | Fi] ]
=r+Eallix,=pEa[l{mpe,<oo) | F1]] + Ealix,—c1Ea {00, <00} | F1]]
=+ Ea[lix, =5 Bx, [Linp<oo]] + Ballix, =y Ex, [Tap<oo]]
=r+Ea[lix,-5Ea 1 {n,<o0)]] + Ballix,—oyEo L, <oy]]
=r+Ea[lix,—5) B[ <o0)] +Ballix, =y Eo[Limp, <o)
=71+ ppB,D + 4pPC,D-
Using (1) we get
pAD =T +Ppar +qpar=1—p—q+ppar+apar (2)
In an analogous way, we get
PAE = DPPAD + 4PAF, (3)
PAF = PPAE + qPA,D- (4)



Solving the system of the three linear equations (2) — (4), we obtain

pAD = 11 :
o l-pgtptatpi+e
PAE = p—i—q2
T l-pg+p+a+pi+er
PAF = q+p2

Cl-pgtptq+p+g?

Solution 8.2

For k = 0 the result is clear. If y € C, then Py[rc > kN] = P[0 > kN] = 0 for all £ > 0. We
will prove the inequality for all y € E\C and k > 1 by induction over k. For y € E\C, we have

Pyro > N < Plre > n(y)] < 1—ryc(n(y) <1 —e. (5)
For k > 2, we obtain
Pylrc > kN) = Ey[Lirosiny] = By[By [Lrosiny | Fo-nn]]-

Moreover,
Lirosint = Lires(-1yvy (Lgresny © Oe—1)n ) -

This can be seen by noting that {7¢ > ¢} = {Xo, X1,..., X, € E\C} and therefore

Lirosny o 0—nn = Lixy,...xyer\C} © O—1)N
= X1y XaneB\CY-
The function 1¢- ~x—1)n} = ]l{XO,Xlgqu(k;_l)NeE\C} is F(x—1)n-measurable. Applying the sim-
ple Markov property in the second step, we obtain
Pylrc > kN = Ey[Liros -1y N By [Lresny 0 O nyv | Fe-nn]]
= By [Mres(e-)vy Bxe iy [Lresmy] ]

<(1—¢) by (5)
<(1-¢) Ey []l{rc>(k—1)N}} <(1- 5)k~

<(1—¢)k=1 by induction hypothesis

Solution 8.3

(a) We have
h(@) = Polra < 78] = Be[lizy<rp)] = Ea[Ea[Lirycrpy | F1]]



and on {Xo € E\(AU B)} we obtain

Liryarsy = 2 Lramn} Lirgon

n=1

= Z Lixy,. xpem\atlix,eailix, . x,cp\B}

n=1

= (Z ]1{Xo,...,Xn_zeE\A}]l{Xn_leA}1{X0,...,Xn_1€E\B}) o th

n=1

n=0

= (Z ]l{XO,...,Xn1GE\A}]l{XneA}]l{XO,.‘.,XneE\B}> o6

= ]]-{TA<TB} o 01‘
Applying the simple Markov property for x € E\(A U B) we obtain

h(z) = Ey [Em []I{TA<TB}091 } ‘7:1“ = Ey [EXl []I{TA<TB}]] = Eg[h(X1)] = Z T;,;,yh(y).
yeE

We only need to show that
Vo € E\(AUB) 3n(z) such that r; aup(n(z)) > 0, (6)
then Exercise 8.2 implies
Py[raup = o0] < Pylraup > kN] < (1 —¢)* — 0 as k — oo,

hence Pltaup < oo = 1. We show (6) by contradiction. Suppose that there exists
x* € E\(AU B) such that for all n > 1 we have r;« qup(n) = 0. Then

oo

Py[raup < 00] = Y Pus[raup =n] =0,
— N——
n=1 <rgx,aup(n)=0

which contradicts the assumption of this exercise.

We have

Eﬂ [h(XTL/\TAuB) ‘ ]:nfl] = Eﬂ []l{TAUB<Tl}h(Xﬂ/\TAUB) ’ ]:nfl]
+ EN []l{TAuBZH}h(Xn/\TAuB) ‘ ]:n—l}-

On {7aup < n} we have Xynryup = X(n—1)Ara, s hence

El/« []l{TAuB<n}h(Xn/\TAuB) | ]:n—l] = ]l{TAUB<TL}h(X(TL71)/\TAUB)7 (7)

as 1y, p<n} 18 Fn—1-measurable. The function 1y, .~} is also F,_1-measurable and on

{TauB > n} we have Xyar, 5 = Xn, therefore

EH []I{TAUBZTL}h(X’n/\TAuB) ‘ Fn—l] = ]l{TAuBZn}E# [h(Xn) | ]:n—l]
= ]l{TAUBZn}E,LL [h(Xl) 0 0nh—1 ‘ ]:nfl]
= ]]'{TAUBZ"Z}Eanl [h(Xl)]a

using the simple Markov property in the last step. If Taup > n, then X,,_; € E\(AU B).
Using equation (%) we obtain



hence

EM []l{TAuBZn}h(XN/\TAuB) ‘ Fn_l]
- ]l{TAUBZn}h(Xn_l) = ]l{TAugzn}h(X(n—l)/\TAuB)' (8)
Combining (7) and (8) yields the claim.
In part a) of this exercise we showed that hi(z) = P[t4 < 7p] fulfills (). It is clear that
hiis 1 on A and 0 on B. Let hy be a second solution of (x) that is 1 on A and 0 on B.

Then hy — hy also solves (x) and is 0 on AU B. By b) we have P[tqup < oo] =1, so P-a.s.
for n large we have

(hl - h2)(Xn/\TAuB) =0,

hence (hy — h2)(Xnary,p) — 0 P-a.s. as n — oo. The function hy — hg is bounded as
E\(AU B) is finite. Therefore also E,[(h1 — h2)(Xnara,z)] — 0 as n — oo, which implies
that ((h1 — h2)(Xnara,p))n>0 is uniformly integrable. Martingale theory yields

(1 — ) (Xunraon) = Bal0 | Ful = 0

for all n > 0. This holds for all initial distributions w, hence in particular for p = 6.,
x € E\(AU B). For n = 0, we obtain

(h1 = h2)(Xonraup) = (1 — h2)(z) = 0.

Solution 8.4

(a) One finds easily that for x € Z
(Reg) () = (pe + ge™™) ec(a).

Let n > 2. By induction we get (R"e) (z) = (pe'€ + ge™¢)" eg(z).
(b) We compute,

d d
[ o= 55 S oy mey
[771-777) [771-777) yGZ

~ Yo [ ey

yEZ [—m,m)

=r0,0(n),

where we used the dominated convergence for the second inequality as |eg] < 1 and
we proved in Exercise 7.3 that ||R(n)|| = 1. Furthermore a quick computation yields

f[ﬂr,w) %66(9) = 0oy, for y € Z.

Computing the same integral and using (a), we obtain
d€ dé ; i\
— (R"¢) (0) = — (pelt i 0
Jommeam= ] 5 (o) o

This proves the claim.



(c) We have

K Ze 7’00

n=0

= Zegn/

n=0 [77r ™)

. n
— Z/ e pelé + qe ‘§> )
7T7T

n=0

d . A\
S <pela + )
T

We have e (pei”"5 + qe_ixg) | <1, so by the dominated convergence theorem we obtain

K. / Ze en (pel§ +ge ‘5>
7T7T

_ / dg 1
N [—mm) 2m 1 —e7F (pei® + ge~¢)
By the monotone convergence theorem we have

lim K. =) roo(n).

e—0
n=0

So studying the limit of K, for ¢ going to 0 gives the behaviour of the random walk. If the
limit is finite, the chain is transient, if not the chain is recurrent.

We have

1 1
1—e < (pef€ +ge &)  1—e<(cos(é) +iasin(€))’

Let § > 0. For m > ! . Therefore,

&1 =6, ‘1—e*5(cob(§)+ldﬁln(f)) S T-e= cos(0)

T T
s<lel<n 21 —e7F (pei€ 4 ge—i€) = 1 —e~<cos(5)’

e Assume a =0, so that p =¢ = % We have

/5 d¢ 1
= 00,
_s2m1—e*cos (&)

as € goes to 0. We can indeed write

52

1-eeos() = 1= (1+0() (1- 5 + 0(eh)

2 2 4 4
=% +0) <1—2+0(5 )>+0(5)

which is not integrable around 0. So a symmetric random walk on Z is recurrent.

e Assume now a > 0. We need to study the quantity

de 1 e 1
/_5 2 1 —e~¢ (pei€ + ge—i€) /_5 27 1 — e~< (cos(€) + iasin(€))”



We have

2
1 —e ¢ (cos(é) +iasin(€)) =1 — (1 +e+ O(e?)) <1 — % +iag + 0(53)>
= —ia€ + 0(52) —(e+ 0(52)) (1 +ia& + 0(52)) ,

and there exist two positive constants C7 and C9 such that for
] <6 : Cre < |(e+ O(e2)) (1 +iag + O(£2))| < Cae.
This gives

1
‘/527r 1 — e (cos(§) +iasin(§) ‘ ‘/527T—1a§+015

_ 1 / @ 1
ol |/ 2me +1Gs
1 / i & / d Cf
~a| |5 2n €2 4 & 5 2m g2 4 Cie?
11 6% + =i , Sa da
= m 5log (520252> —1i (Arctan <C16> — Arctan <_Cle>>‘
1 da da
= — (A — | - A -
]a\ < rctan (Cls> rctan < 018>>

The asymmetric random walk on Z is then transient.

™

e—0 |a{

(d) We define for £ € [—, 7)<, the function e¢(z) on Z? by eg(z) := el*. By a similar reasoning
as above, we have

d

() 0) =3 ((eclo + + Geelo—e0)

=1

and

We now define

E € —en TOQ

n=0
dg 4 p. !
=S [ e DG e
n=0 j=1

_ / i !
[-mm) 2T 1 —e—e (Zd— L COS(fj)) |

7=1 2

The last equality is obtained with the dominated convergence theorem. By monotone
convergence we have lim,_,q Kg = 2790 70,0(1).



e Let us consider the case with d = 2. Let § > 0. Using a Taylor expansion of cosine,
we get that for £ € [—4, 4], and § small enough

bj , |§!2
g cos(§) > 1—( max b+ €5)——
o 2 JE{L,...d}

for some €5 > 0. Let C1 = max;e(y,... gy bi + €5. Then for some Cy,C3 > 0,

ety Lo St
[~60) 271 —e—* (Zﬁl Jcos(53)> " Jimse 2mL—e= (1= CufgP)

/ d€ 1
2 -
(—s5) 2m Cae + C3l¢|?
rdr
0 CQE + 037"2

. i o Che + 52 ~
- C3 & Cgé‘ e—0

We conclude that the symmetric random walk in Z? is recurrent.

e Assume now d > 3. Similarly,

b |§!2
Zgjcos(ﬁj) <1—( min b +é)—

= je{1,....d}

for some €5 > 0. Let C4 = max;c(y,. 4y bi — €. Then, for some positive constants
057 067 077

/ € 1 </ g 1
[~60) 271 —e—* (Zﬁl Y cos(&g)> " Jimse) 2m L —eme (1= Culg]?)

/ de 1
< 2% Cre 1 Colel
[—s5,6) 2™ Cse + Cgl¢]
0 Cord=lqr
0 C5<€ + C@’I”2

which is finite for all € > 0.
The random walk in Z% for d > 3 is transient.

(e) A similar reasoning gives that asymmetric random walks in any dimension are tran-
sient.

Note: Let f be a function on Z¢ with sufficiently fast decay (e.g. with compact support).
For ¢ € [ -, 7r)d the Fourier transform of f is given by

=D fla)e,
x€Z

One can get f back using the transformation

Let us define the scalar product for f and g square integrable by

)= fla)g(x)

x€Z4



By Plancherel’s theorem,

o aC)

(o) = (7.9 = [

[771-»77)‘1

so that the Fourier transform is an isometry.
For a general random walk on Z? as defined in question (e), define

d

B&) = (pjeigj + q]'e*igj> :

J=1

The Fourier transform operator diagonalises the operator R, by which we mean,

—

(Rf)(&) = o(€)f(E)-

Hence,

By definition,

ro,0(n) = (o, R"do).

Then,
ro0(n) = (6o, R")
= (80, ¢"d0)
- /[) (Qdf)dqs(é)”,
as oy = 1.

To obtain the conditions for recurrence and transience of random walks we have actually used
the fact that the Fourier transform diagonalises the operator R.



