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1. For a function f : [0,∞)→ R, we define its variation |f | : [0,∞)→ [0,∞] by

|f |(t) := sup

{∑
ti∈Π

∣∣f(ti+1)− f(ti)
∣∣ ∣∣∣∣Π is a partition of [0, t]

}
.

We say that f has finite variation (FV) if |f |(t) <∞ for all t ≥ 0.

(a) Show that f has finite variation if and only if there exist non decreasing functions
f1, f2 : [0,∞)→ R such that f = f1 − f2.
Hint: Show that |f | is non decreasing.

Recall that if f is a non decreasing and continuous function, then there exists a unique
positive measure µf on (R+,B(R+)) such that µf

(
[0, t]

)
= f(t)− f(0) for all t ≥ 0.

Therefore, if f is non decreasing and continuous, we call a function g : [0,∞) → R
f -integrable in the Lebesgue–Stieltjes sense if

∫∞
0
|g(s)|µf (ds) < ∞. In that case,

we define
∫
g(s) df(s) :=

∫
g(s)µf (ds) and call it the Lebesgue–Stieltjes integral.

(b) Let f be of finite variation and continuous and g : [0,∞) → R such that∫∞
0
|g(s)|µ|f |(ds) < ∞. Show that there are non decreasing, continuous functi-

ons f1, f2 : [0,∞)→ R such that f = f1 − f2 and both∫ ∞
0

|g(s)|µf1(ds) <∞,
∫ ∞

0

|g(s)|µf2(ds) <∞.

Moreover, show that∫
g(s) df(s) :=

∫
g(s)µf1(ds)−

∫
g(s)µf2(ds)

is well-defined.

Hint: Recall that if f has finite variation and continuous, then |f | is continuous.

Remark: If f is of finite variation and continuous, we call g f -integrable in the
Lebesgue–Stieltjes sense if g satisfies

∫∞
0
|g(s)|µ|f |(ds) <∞.

Bitte wenden!



2. Assume we have a filtered probability space (Ω,F ,F, P ) satisfying the usual con-
ditions. Let Mc

0,loc:= {the set of (P,F)-continuous local martingales starting in 0}
and H2,c

0 :={the set of continuous (P,F)- martingales (Mt)t≥0 starting in 0 which are
bounded in L2(P ), i.e., supt≥0E[M2

t ] <∞}.

(a) Let M ∈Mc
0,loc. Prove that M ∈ H2,c

0 if and only if E[〈M〉∞] <∞.

(b) A stochastic process X is said to be of class (DL) if for all a > 0, the family

Xa :=
{
Xτ

∣∣τ stopping time , τ ≤ a P -a.s.
}

is uniformly integrable. Show that a local martingale null at 0 is a (true) martin-
gale null at 0 if and only if it is of class (DL).

Remark: If M is continuous local martingale, often the quadratic variation process
of M is denoted by 〈M〉. If M is a local martingale which also admits jumps, then
the quadratic variation process is denoted by [M ]. So, if the process M is continuous,
then 〈M〉 and [M ] coincide.

3. Let B be a Brownian motion in R3, 0 6= x ∈ R3 and define the process M = (Mt)t≥0

by

Mt =
1

|x+Bt|
.

This is well defined as a 3-dimensional Brownian motion does not hit points, as seen
in the lecture.

a) Show that M is a continuous local martingale.
Hint: Use Itô’s formula.
Moreover, show that M is bounded in L2, i.e., supt≥0E[|Mt|2] <∞.
Hint: For any t ≥ 0, show that

E
[
|Mt|21{|Mt|≥ 2

|x|}

]
= (2πt)−

3
2

∫
|y|≤ |x|

2

1

|y|2
exp

(
−|y − x|

2

2t

)
dy

and estimate the right-hand side from above using the reverse triangle inequality.

b) Show that M is a strict local martingale, i.e., M is not a martingale.
Hint: Show that E[Mt]→ 0 as t→∞. To this end, similarly to part a), compute
E[Mt] and use the reverse triangle inequality as a first estimate. Then compute
the resulting integral using spherical coordinates.

Remark: This is the standard example of a local martingale which is not a (true)
martingale. It also shows that even good integrability properties like boundedness in
L2 are not enough to guarantee the martingale property.

Siehe nächstes Blatt!



4. Matlab Exercise Let x = (1, 1, 1)T ∈ R3. We consider the first time that a three-
dimensional Brownian motion starting in x hits the unit ball B1(0), i.e.,

TB1(0) := inf{t > 0|x+Bt ∈ B1(0)},

where B is a standard Brownian motion starting in (0, 0, 0)T ∈ R3. From the lecture
we know that P [TB1(0) < ∞] = 1/‖x‖. The goal of this exercise is to compute this
probability numerically. That is, take T = 200 and simulate 104 sample paths of a
three dimensional Brownian motion (dt = 10−2). For each sample path determine
whether the Brownian motion hits the unit ball and compute P [TB1(0) < ∞] numeri-
cally.

Hint: Use Monte-Carlo simulation to compute E[1{TB1(0)
<∞}]. The essential idea of

Monte Carlo simulation is that – by the law of large numbers – for large m ∈ N and
an i.i.d. sequence X1, . . . , Xm we have

E[X1] ≈ 1

m

m∑
k=1

Xk.


