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1. For a function f : [0,00) — R, we define its variation | f| : [0, 00) — [0, o0] by
| f1(%) —sup{Z|f i+1) — f(t:)] Hisapartitionof[O,t]}.
tiell

We say that f has finite variation (FV) if | f|(¢) < oo for all ¢ > 0.

(a) Show that f has finite variation if and only if there exist non decreasing functions
fl, f2 : [O, OO) — IR such that f = f1 — f2.
Hint: Show that | f| is non decreasing.

Recall that if f is a non decreasing and continuous function, then there exists a unique
positive measure yi; on (R, B(R,)) such that 44 ([0,t]) = f(t) — f(0) forall ¢ > 0.
Therefore, if f is non decreasing and continuous, we call a function g : [0,00) — R
f-integrable in the Lebesgue—Stieltjes sense if [~ |g(s)| jur(ds) < oo. In that case,
we define [ g(s)df(s) := [ g(s) pus(ds) and call it the Lebesgue-Stieltjes integral.

(b) Let f be of finite variation and continuous and ¢ : [0,00) — R such that
I3 1g(s)] sz (ds) < co. Show that there are non decreasing, continuous functi-
ons f1, fo: [0,00) — R such that f = f; — f5 and both

| tatsnstas) <oe [T lae)nntis) <

Moreover, show that

[ o ats) = [ untds)~ [ o(s) sl

is well-defined.

Hint: Recall that if f has finite variation and continuous, then | f| is continuous.

Remark: If f is of finite variation and continuous, we call g f-integrable in the
Lebesgue—Stieltjes sense if g satisfies [~ |g(s)| p7(ds) < oo.

Bitte wenden!



2. Assume we have a filtered probability space (€2, F,F, P) satisfying the usual con-
ditions. Let MG ,,.:= {the set of (P,IF)-continuous local martingales starting in 0}

and H;“:={the set of continuous (P, F)- martingales (M, ), starting in O which are
bounded in L*(P), i.e., sup,so E[M}] < oo}.

(a) Let M € MG, Prove that M € HoC if and only if E[(M)s] < oo.
(b) A stochastic process X is said to be of class (DL) if for all a > 0, the family
X, = {XT‘T stopping time , 7 < a P—a.s.}

is uniformly integrable. Show that a local martingale null at 0 is a (true) martin-
gale null at 0 if and only if it is of class (DL).

Remark: If M is continuous local martingale, often the quadratic variation process
of M is denoted by (M). If M is a local martingale which also admits jumps, then
the quadratic variation process is denoted by [M]. So, if the process M is continuous,
then (M) and [M] coincide.

3. Let B be a Brownian motion in R?, 0 # z € R? and define the process M = (M;);>o

by
1

|z + By
This is well defined as a 3-dimensional Brownian motion does not hit points, as seen
in the lecture.

t

a) Show that M is a continuous local martingale.
Hint: Use 1td’s formula.
Moreover, show that M is bounded in L?, i.e., sup,~, E[|M;|*] < cc.
Hint: For any t > 0, show that -
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and estimate the right-hand side from above using the reverse triangle inequality.

b) Show that M is a strict local martingale, i.e., M is not a martingale.
Hint: Show that E[M,] — 0 as t — oo. To this end, similarly to part a), compute
E[M,;] and use the reverse triangle inequality as a first estimate. Then compute
the resulting integral using spherical coordinates.

Remark: This is the standard example of a local martingale which is not a (true)
martingale. It also shows that even good integrability properties like boundedness in
L? are not enough to guarantee the martingale property.

Siehe nachstes Blatt!



4. Matlab Exercise Let z = (1,1,1)7 € R3. We consider the first time that a three-
dimensional Brownian motion starting in z hits the unit ball B;(0), i.e.,

TBl(O) = Hlf{t > 0|I‘ + Bt € Bl(O)},

where B is a standard Brownian motion starting in (0,0,0)" € R3. From the lecture
we know that P[Tz, ) < oo] = 1/[|z||. The goal of this exercise is to compute this
probability numerically. That is, take 7" = 200 and simulate 10* sample paths of a
three dimensional Brownian motion (dt = 1072). For each sample path determine
whether the Brownian motion hits the unit ball and compute P[T’s, ) < oo] numeri-
cally.

Hint: Use Monte-Carlo simulation to compute £ [1{T51(0><00}]. The essential idea of
Monte Carlo simulation is that — by the law of large numbers — for large m € N and
an i.i.d. sequence X1, ..., X, we have

m
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