Brownian Motion and Stochastic Calculus Exercise Sheet 7

1. For a function $f:[0, \infty) \rightarrow \mathbb{R}$, we define its variation $|f|:[0, \infty) \rightarrow[0, \infty]$ by

$$
|f|(t):=\sup \left\{\sum_{t_{i} \in \Pi}\left|f\left(t_{i+1}\right)-f\left(t_{i}\right)\right| \mid \Pi \text { is a partition of }[0, t]\right\} .
$$

We say that f has finite variation (FV) if $|f|(t)<\infty$ for all $t \geq 0$.
(a) Show that f has finite variation if and only if there exist non decreasing functions $f_{1}, f_{2}:[0, \infty) \rightarrow \mathbb{R}$ such that $f=f_{1}-f_{2}$.
Hint: Show that $|f|$ is non decreasing.
Recall that if f is a non decreasing and continuous function, then there exists a unique positive measure μ_{f} on $\left(\mathbb{R}_{+}, \mathcal{B}\left(\mathbb{R}_{+}\right)\right)$such that $\mu_{f}([0, t])=f(t)-f(0)$ for all $t \geq 0$. Therefore, if f is non decreasing and continuous, we call a function $g:[0, \infty) \rightarrow \mathbb{R}$ f-integrable in the Lebesgue-Stieltjes sense if $\int_{0}^{\infty}|g(s)| \mu_{f}(d s)<\infty$. In that case, we define $\int g(s) d f(s):=\int g(s) \mu_{f}(d s)$ and call it the Lebesgue-Stieltjes integral.
(b) Let f be of finite variation and continuous and $g:[0, \infty) \rightarrow \mathbb{R}$ such that $\int_{0}^{\infty}|g(s)| \mu_{|f|}(d s)<\infty$. Show that there are non decreasing, continuous functions $f_{1}, f_{2}:[0, \infty) \rightarrow \mathbb{R}$ such that $f=f_{1}-f_{2}$ and both

$$
\int_{0}^{\infty}|g(s)| \mu_{f_{1}}(d s)<\infty, \quad \int_{0}^{\infty}|g(s)| \mu_{f_{2}}(d s)<\infty
$$

Moreover, show that

$$
\int g(s) d f(s):=\int g(s) \mu_{f_{1}}(d s)-\int g(s) \mu_{f_{2}}(d s)
$$

is well-defined.

Hint: Recall that if f has finite variation and continuous, then $|f|$ is continuous.
Remark: If f is of finite variation and continuous, we call g f-integrable in the Lebesgue-Stieltjes sense if g satisfies $\int_{0}^{\infty}|g(s)| \mu_{|f|}(d s)<\infty$.
2. Assume we have a filtered probability space $(\Omega, \mathcal{F}, \mathbb{F}, P)$ satisfying the usual conditions. Let $\mathcal{M}_{0,1 \mathrm{loc}}^{c}:=\{$ the set of (P, \mathbb{F})-continuous local martingales starting in 0$\}$ and $\mathcal{H}_{0}^{2, c}:=\left\{\right.$ the set of continuous (P, \mathbb{F}) - martingales $\left(M_{t}\right)_{t \geq 0}$ starting in 0 which are bounded in $L^{2}(P)$, i.e., $\left.\sup _{t \geq 0} E\left[M_{t}^{2}\right]<\infty\right\}$.
(a) Let $M \in \mathcal{M}_{0, \text { loc }}^{c}$. Prove that $M \in \mathcal{H}_{0}^{2, c}$ if and only if $E\left[\langle M\rangle_{\infty}\right]<\infty$.
(b) A stochastic process X is said to be of class (DL) if for all $a>0$, the family

$$
\mathfrak{X}_{a}:=\left\{X_{\tau} \mid \tau \text { stopping time }, \tau \leq a P \text {-a.s. }\right\}
$$

is uniformly integrable. Show that a local martingale null at 0 is a (true) martingale null at 0 if and only if it is of class (DL).

Remark: If M is continuous local martingale, often the quadratic variation process of M is denoted by $\langle M\rangle$. If M is a local martingale which also admits jumps, then the quadratic variation process is denoted by $[M]$. So, if the process M is continuous, then $\langle M\rangle$ and $[M]$ coincide.
3. Let B be a Brownian motion in $\mathbb{R}^{3}, 0 \neq x \in \mathbb{R}^{3}$ and define the process $M=\left(M_{t}\right)_{t \geq 0}$ by

$$
M_{t}=\frac{1}{\left|x+B_{t}\right|}
$$

This is well defined as a 3-dimensional Brownian motion does not hit points, as seen in the lecture.
a) Show that M is a continuous local martingale.

Hint: Use Itô's formula.
Moreover, show that M is bounded in L^{2}, i.e., $\sup _{t \geq 0} E\left[\left|M_{t}\right|^{2}\right]<\infty$.
Hint: For any $t \geq 0$, show that

$$
E\left[\left|M_{t}\right|^{2} 1_{\left\{\left|M_{t}\right| \geq \frac{2}{|x|}\right\}}\right]=(2 \pi t)^{-\frac{3}{2}} \int_{|y| \leq \frac{|x|}{2}} \frac{1}{|y|^{2}} \exp \left(-\frac{|y-x|^{2}}{2 t}\right) d y
$$

and estimate the right-hand side from above using the reverse triangle inequality.
b) Show that M is a strict local martingale, i.e., M is not a martingale.

Hint: Show that $E\left[M_{t}\right] \rightarrow 0$ as $t \rightarrow \infty$. To this end, similarly to part a), compute $E\left[M_{t}\right]$ and use the reverse triangle inequality as a first estimate. Then compute the resulting integral using spherical coordinates.

Remark: This is the standard example of a local martingale which is not a (true) martingale. It also shows that even good integrability properties like boundedness in L^{2} are not enough to guarantee the martingale property.

Siehe nächstes Blatt!
4. Matlab Exercise Let $x=(1,1,1)^{T} \in \mathbb{R}^{3}$. We consider the first time that a threedimensional Brownian motion starting in x hits the unit ball $B_{1}(0)$, i.e.,

$$
T_{B_{1}(0)}:=\inf \left\{t>0 \mid x+B_{t} \in B_{1}(0)\right\},
$$

where B is a standard Brownian motion starting in $(0,0,0)^{T} \in R^{3}$. From the lecture we know that $P\left[T_{B_{1}(0)}<\infty\right]=1 /\|x\|$. The goal of this exercise is to compute this probability numerically. That is, take $T=200$ and simulate 10^{4} sample paths of a three dimensional Brownian motion ($d t=10^{-2}$). For each sample path determine whether the Brownian motion hits the unit ball and compute $P\left[T_{B_{1}(0)}<\infty\right]$ numerically.

Hint: Use Monte-Carlo simulation to compute $E\left[\mathbf{1}_{\left\{T_{B_{1}(0)}<\infty\right\}}\right]$. The essential idea of Monte Carlo simulation is that - by the law of large numbers - for large $m \in \mathbb{N}$ and an i.i.d. sequence X_{1}, \ldots, X_{m} we have

$$
E\left[X_{1}\right] \approx \frac{1}{m} \sum_{k=1}^{m} X_{k} .
$$

