Brownian Motion and Stochastic CalculusExercise Sheet 11

1. Let $(B_t)_{t\geq 0}$ be a Brownian motion defined on a probability space (Ω, \mathcal{F}, P) . Consider the SDE

$$dX_t = \left(\sqrt{1 + X_t^2} + \frac{1}{2}X_t\right)dt + \sqrt{1 + X_t^2}dB_t, \quad X_0 = x \in \mathbb{R}.$$
 (1)

- a) Show that for any $x \in \mathbb{R}$ the SDE defined in (1) has a unique strong solution. *Hint:* Verify that the coefficients of the SDE satisfy the required Lipschitz and linear growth condition.
- **b)** Show that $(X_t)_{t\geq 0}$ defined by $X_t = \sinh \left(\operatorname{arsinh} x + t + B_t \right)$ is the unique solution of (1).

Hint: Consider the process $(Y_t)_{t\geq 0}$ defined by $Y_t := \operatorname{arsinh} B_t$.

- **2.** Let $W = (W_t)_{t \geq 0}$ be a Brownian motion defined on some filtered probability space $(\Omega, \mathcal{F}, \mathbb{F}, P)$ satisfying the usual conditions.
 - a) Consider the *Ornstein-Uhlenbeck process*

$$X_t = xe^{-\lambda t} + \nu(1 - e^{-\lambda t}) + \int_0^t \sigma e^{\lambda(s-t)} dW_s, \quad t \ge 0$$
 (2)

for an $x \in \mathbb{R}$, where ν and $\lambda, \sigma > 0$ are real constants. Show that X satisfies the Ornstein-Uhlenbeck SDE:

$$dX_t = \lambda(\nu - X_t)dt + \sigma dW_t, \quad X_0 = x.$$

Hint: Apply Itô's formula to $f(x,t) = xe^{\lambda t}$.

b) Calculate the mean and variance functions of X:

$$T \mapsto \mathbb{E}[X_T]$$
, and $T \mapsto \text{Var}[X_T]$.

c) Let now $\nu=0$. Show that there is a Brownian motion B such that $Y:=X^2$ satisfies the following Cox-Ingersoll-Ross SDE

$$dY_t = (-2\lambda Y_t + \sigma^2) dt + 2\sigma \sqrt{Y_t} dB_t.$$

3. Let $W=(W_t)_{t\geq 0}$ be a Brownian motion defined on some filtered probability space $(\Omega, \mathcal{F}, \mathbb{F}, P)$ satisfying the usual conditions. Assume that the filtration \mathbb{F} is generated by the Brownian motion W. Consider the Tanaka SDE

$$dX_t = sgn(X_t)dW_t, \quad X_0 = 0,$$

where sgn(x) denotes the sign function, i.e., sgn(x) = 1 if x > 0 and sgn(x) = -1 if x < 0.

- **a)** Show that the Tanaka SDE has no strong solution. *Hint:*
 - Assume there exists a strong solution and derive a contradiction.
 - You can use the following result (Tanaka's formula): Let X be a continuous semimartingale. There exists a continuous increasing adapted process $(L_t)_{t\geq 0}$ such that

$$|X_t| - |X_0| = \int_0^t sgn(X_s)dX_s + L_t.$$

Moreover, it can be shown that L is $\mathbb{F}(|X|)$ adapted, where $\mathbb{F}(|X|)$ denotes the filtration generated by |X|.

- **b)** Show that the SDE admits a weak solution.
- **4. Matlab Exercise** Given a finite time horizon T=1, the aim of this exercise is to simulate the Ornstein-Uhlenbeck process and the Cox-Ingersoll-Ross process from (Ex 11-2) on the time interval [0,T] using the *Euler-Maruyama scheme*. To this end, let W be a dimensional Brownian motion. We define an equidistant de-

To this end, let W be a dimensional Brownian motion. We define an equidistant decomposition $\{0 = t_0 < \ldots < t_n = T\}$ of the interval [0, T] by setting

$$t_i := \frac{i}{M}T, \quad i = 0, \dots, M = 10^3.$$

If X is a process on the interval [0, T] satisfying the stochastic differential equation

$$dX_t = a(t, X_t)dt + b(t, X_t)dW_t$$

¹This is the stochastic version of the Euler-scheme for ODEs.

with initial condition $X_0 = x$ for an $x \in \mathbb{R}$, and $t_0 = 0 < t_1 < \ldots < t_M = T$ is a given discretization of the time interval [0, T], then an *Euler-Maruyama approximation*² of X is given by the iterative scheme: $X_0 = x$ and

$$X_{t_{i+1}} = X_{t_i} + a(t_i, X_{t_i})(t_{i+1} - t_i) + b(t_i, X_{t_i})(W_{t_{i+1}} - W_{t_i}), \quad i = 0, \dots, M - 1.$$

- a) Simulate 10 sample paths of the OU-process X from Ex 11-2 a) with $\lambda=1$, $\nu=1.2,\,\sigma=0.3$ and $X_0=1$.
- **b)** Use Monte-Carlo simulation $(N = 10^5)$ to compute $\mathbb{E}[X_1], \mathbb{E}[X_1^2], \mathbb{E}[X_1^+]$.
- c) Consider the *Cox-Ingersoll-Ross* process *Y* defined by the following SDE:

$$dY_t = \lambda(\nu - Y_t)dt + \sigma\sqrt{Y_t}dW_t, \quad Y_0 = y.$$

Repeat the tasks (a) and (b) for the CIR process. Is there a *potential* problem for the simulation procedure?

Remark: For part c) it can be shown that under the parameter restriction $2\lambda\nu \geq \sigma^2$ the process Y is P. a.s. strictly positive.

²As a reference for the Euler-Maruyama approximation see for example Section 3.2 of *Numerical Solution of SDE Through Computer Experiments* (Kloeden, Platen, Schurz).