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1. Let (B;):>o be a Brownian motion defined on a probability space (€2, F, P). Consider
the SDE

1
dX, — <\/1+X3+5Xt> dt + 1+ X2dB;,, Xo=z€R. (1)

a) Show that for any x € R the SDE defined in (1) has a unique strong solution.
Hint: Verify that the coefficients of the SDE satisfy the required Lipschitz and
linear growth condition.

b) Show that (X;);>o defined by X; = sinh (arsinh x—l—t+Bt) is the unique solution
of (1).
Hint: Consider the process (Y;);>o defined by Y; := arsinh B;.

2. Let W = (W});>o be a Brownian motion defined on some filtered probability space
(Q, F,TF, P) satisfying the usual conditions.

a) Consider the Ornstein-Uhlenbeck process
t
X, =ze M+l —eM) + / oV AW,, >0 2)
0

for an z € R, where v and )\, 0 > 0 are real constants. Show that X satisfies the
Ornstein-Uhlenbeck SDE:

dXt = >\(V — Xt>dt + O'th, XO = X.
Hint: Apply 1to’s formula to f(x,t) = zeM.

b) Calculate the mean and variance functions of X:

T— E[Xr|, and T ~ Var[X7p].

Bitte wenden!



¢) Let now v = 0. Show that there is a Brownian motion B such that Y := X?
satisfies the following Cox-Ingersoll-Ross SDE

dY, = (=2\Y; + 02) dt + 20\/Y, dB,.

3. Let W = (W,;);>0 be a Brownian motion defined on some filtered probability space
(Q, F,TF, P) satisfying the usual conditions. Assume that the filtration I is generated
by the Brownian motion WW. Consider the Tanaka SDE

dX; = sgn(X;)dW,, X, =0,

where sgn(x) denotes the sign function, i.e., sgn(z) = 1if > 0 and sgn(x) = —1
if x <0.

a) Show that the Tanaka SDE has no strong solution.
Hint:
e Assume there exists a strong solution and derive a contradiction.

e You can use the following result (Tanaka’s formula): Let X be a continuous
semimartingale. There exists a continuous increasing adapted process (L;):>o
such that

t
|Xt|—|X0|:/ sgn(X.)dX, + L.
0

Moreover, it can be shown that L is [F(|X|) adapted, where F(|X|) denotes
the filtration generated by | X|.

b) Show that the SDE admits a weak solution.

4. Matlab Exercise Given a finite time horizon 7" = 1, the aim of this exercise is to si-
mulate the Ornstein-Uhlenbeck process and the Cox-Ingersoll-Ross process from (Ex
11-2) on the time interval [0, 7| using the Euler-Maruyama scheme.!

To this end, let 1 be a dimensional Brownian motion. We define an equidistant de-
composition {0 =ty < ... < t, = T} of the interval [0, T'] by setting

ti::MT, i=0,...,M =10

If X is a process on the interval [0, T'] satisfying the stochastic differential equation

dXt = a(t, Xt)dt + b(t, Xt>th

IThis is the stochastic version of the Euler-scheme for ODEs.

Siehe nichstes Blatt!



with initial condition Xg = z foranz € R,and {0 =0 < t; < ... <ty =T is a gi-
ven discretization of the time interval [0, T'], then an Euler-Maruyama approximation*
of X is given by the iterative scheme: X, = x and

Xt :Xti+a<ti,Xti)(ti+1 —tz)+b<tz,th)<Wt _Wti)a Z:O,7M— ]_

it+1 it+1

a) Simulate 10 sample paths of the OU-process X from Ex 11-2 a) with A = 1,
v=12,0=03and X, =1.

b) Use Monte-Carlo simulation (N = 10°) to compute E[X], E[X?], E[X{"].
¢) Consider the Cox-Ingersoll-Ross process Y defined by the following SDE:
dY; = Mv —Y)dt + o/ YedW,, Yy =u.

Repeat the tasks (a) and (b) for the CIR process. Is there a potential problem for
the simulation procedure?

Remark: For part ¢) it can be shown that under the parameter restriction 2\v > o2 the
process Y is P. a.s. strictly positive.

2 As a reference for the Euler-Maruyama approximation see for example Section 3.2 of Numerical Solu-
tion of SDE Through Computer Experiments (Kloeden, Platen, Schurz).



