Brownian Motion and Stochastic Calculus Exercise Sheet 12

1. Consider the SDE

$$dX_t^x = a(X_t^x) dt + b(X_t^x) dW_t, \quad X_0^x = x,$$

where W is an \mathbb{R}^m -valued Brownian motion, $a : \mathbb{R}^d \to \mathbb{R}^d$ and $b : \mathbb{R}^d \to \mathbb{R}^{d \times m}$ are measurable and locally bounded. Assume that for any $x \in U$, we have for $T_U^x := \inf \{s \ge 0; X_s^x \notin U\}$ that T_U^x is P-integrable. Moreover, consider the boundary problem

$$\begin{cases} Lu(x) + c(x)u(x) &= -f(x) & \text{for } x \in U, \\ u(x) &= g(x) & \text{for } x \in \partial U, \end{cases}$$

where $U \neq \emptyset$ is a bounded open subset of \mathbb{R}^d , $f \in C_b(U)$, $g \in C_b(\partial U)$, $c \leq 0$ is a uniformly bounded function on \mathbb{R}^d and L is defined by

$$Lf(x) := \sum_{i=1}^{d} a_i(x) \frac{\partial f}{\partial x^i}(x) + \frac{1}{2} \sum_{i,j=1}^{d} \left(b \, b^{tr} \right)_{ij}(x) \frac{\partial^2 f}{\partial x^i \, \partial x^j}(x).$$

Show that if $u \in C^2(U) \cap C(\overline{U})$ is a solution of the above boundary problem and $(X_t^x)_{t>0}$ is a solution of the SDE for some $x \in U$, then

$$u(x) = E\left[g(X_{T_{U}}^{x}) \exp\left(\int_{0}^{T_{U}^{x}} c(X_{s}^{x}) \, ds\right)\right] + E\left[\int_{0}^{T_{U}^{x}} f(X_{s}^{x}) \exp\left(\int_{0}^{s} c(X_{r}^{x}) \, dr\right) \, ds\right].$$

- **2.** Let X be a Lévy process in \mathbb{R}^d and $f_t(u) = E[e^{i u^{\text{tr}} X_t}]$.
 - a) Show that X is stochastically continuous, i.e., $t \mapsto X_t$ is continuous in probability, i.e., for all $\varepsilon > 0$ and $t \ge 0$ we have $P[|X_t X_s| > \varepsilon] \to 0$ as $s \to t$.
 - **b**) Show that $f_{t+s}(u) = f_t(u)f_s(u)$ for all $s, t \ge 0$ and $f_0(u) = 1$ for any $u \in \mathbb{R}^d$.
 - c) Use b) to show that $f_r(u) = f_1(u)^r$ for all rational $r \ge 0$.
 - d) Show that $t \mapsto f_t(u)$ is right-continuous and conclude that $f_t(u) = f_1(u)^t$ and that $f_t(u) \neq 0$ for all $t \geq 0$ and $u \in \mathbb{R}^d$.

Bitte wenden!

- e) Let d = 1. If $E[|X_1|] < \infty$, then $E[X_t] = tE[X_1]$ for all $t \ge 0$.
- a) Let N be a one-dimensional Poisson process and (Y_i)_{i≥1} i.i.d. ℝ^d-valued random variables independent of N. We define the *compound Poisson process* by X_t := ∑_{i=1}^{Nt} Y_i. Show that X is a Lévy process and calculate its Lévy triplet.
 - **b**) Is there a Lévy process X such that X_1 is uniformly distributed on [0, 1]?
 - c) Let X and Y be both Lévy processes with respect to a filtration (\mathcal{F}_t) . Show that if $E[e^{i u^{\text{tr}}X_t}e^{i v^{\text{tr}}Y_t}] = E[e^{i u^{\text{tr}}X_t}]E[e^{i v^{\text{tr}}Y_t}]$ for all $u, v \in \mathbb{R}^d$ and $t \ge 0$, then X and Y are independent.
- **4.** Matlab Exercise Let T = 1, $N = (N_t)_{t \ge 0}$ a (P, \mathcal{F}) Poisson process with intensity parameter $\lambda = 2$ and X be a compound Poisson process, i.e.,

$$X_t = \sum_{i=1}^{N_t} Z_i$$

with i.i.d random variables Z_i satisfy

$$Z_i = \begin{cases} 1, & p = 0.5, \\ -1, & p = 0.5. \end{cases}$$

- (i) Simulate 10 sample paths of the processes N and X using an equidistant time grid, i.e., $t_i = T \cdot i/M$, $i = 0, \dots, M = 10^3$. *Hint:* Use the fact that the increments of N is Poisson distributed.
- (ii) Compute $\mathbb{E}[e^{N_T}]$, $\mathbb{E}[e^{X_T}]$ using Monte-Carlo simulation with $N = 10^5$ sample paths and compare it with the theoretical values.