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1. a) Being a nonnegative local martingale with Z0 = 1, Z := E(
∫
b dW ) is a su-

permartingale and hence has a nonincreasing mean function. To show that it is a
martingale, it thus suffices to show that E[Ztn ] = E[Zt0 ] = 1 for all n. Fix n ≥ 1
and set bn := b1]]tn−1,tn]]. Then

E

[
exp

(
1

2
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bn dW

]
∞

)]
= E

[
exp
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1

2

∫ tn

tn−1

b2
s ds

)]
<∞.

Therefore, Novikov’s criterion yields that E(
∫
bn dW ) is a (uniformly integrable)

martingale. Finally, noting that Ztn = Ztn−1E(
∫
bn dW )tn and E(

∫
bn dW )tn−1 =

1, we obtain

E[Ztn ] = E

[
Ztn−1E

[
E
(∫

bn dW

)
tn

∣∣∣∣Ftn−1

]]
= E[Ztn−1 ].

b) Fix T ≥ 0 and (ZT )t := Zt∧T the stopped process. With L :=
∫
b dW , we have

ZT = E(LT ). Since ZT is a uniformly integrable martingale, Girsanov’s theorem
yields that

W − 〈LT ,W 〉 = W −
〈∫

b1]]0,T ]] dW,W

〉
= W −

∫
b1]]0,T ]] dt

is a martingale (even a Brownian motion) under the measureQT given by dQT =
ZTdP . By Bayes’ formula (cf. Proposition 4.(4.4) part 2), it follows that(

W −
∫
b1]]0,T ]] dt

)
ZT

is a P -martingale. Hence also MT =
(
W T −

∫
b1]]0,T ]] dt

)
ZT is a P -martingale.

Since T was arbitrary, M is a P -martingale.

2. a) By the Markov property of Brownian motion, we have for any 0 ≤ t < T ,

Mt = E[1{a≤WT≤b}|Ft] = KT−t(Wt, [a, b])
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where K is the Gaussian transition kernel. Define g : R× [0, T )→ R by

g(x, t) = KT−t(x, [a, b]).

Then, denoting the standard normal distribution function by Φ, we have

g(x, t) = Φ

(
b− x√
T − t

)
− Φ

(
a− x√
T − t

)
.

In particular, g is C2,1 on R× (0, T ).

Alternative computation. Noting that Wt is Ft-measurable and WT − Wt ∼
N (0, T − t) is independent of Ft, we can compute

Mt = E[F |Ft] = P [a ≤ WT ≤ b|Ft] = P [a−Wt ≤ WT −Wt ≤ b−Wt|Ft]

= Φ

(
b−Wt√
T − t

)
− Φ

(
a−Wt√
T − t

)
= g(Wt, t).

b) Since Mt = g(Wt, t) is a martingale, the sum of all finite variation terms in Itô’s
formula applied to g(Wt, t) vanishes and we obtain for t ∈ (0, T ) that

Mt −M0 =

∫ t

0

∂g

∂x
(Ws, s) dWs

=

∫ t

0

1√
T − s

(
φ

(
a−Ws√
T − s

)
− φ

(
b−Ws√
T − s

))
dWs, (1)

where φ = Φ′ denotes the standard normal density.

c) Since xφ(x)→ 0 as x→ ±∞, it is easy to see that the integrand in (1) converges
P -a.s. to 0 as s ↑ T . Hence,

H :=
1√
T − s

(
φ

(
a−Ws√
T − s

)
− φ

(
b−Ws√
T − s

))
1[[0,T [[

is a continuous, adapted process. Thus, H ∈ L2
loc(W ) and (1) yields for 0 ≤ t <

T that

Mt = M0 +

∫ t

0

Hs dWs. (2)

Since both sides in (2) are local martingales on [0,∞) and hence continuous, we
can let t ↑ T to get

MT = M0 +

∫ T

0

Hs dWs.

To conclude, it suffices to note that MT = F , M0 = E[F ], and
∫ T

0
Hs dWs =∫∞

0
Hs dWs since H is zero on [[T,∞]]. Moreover,

∫
H dW is a martingale as M

is one.
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3. a) We know from Ex 9-3 that the process Y := (Yt)t∈[0,T ] defined by

Yt := e(λ−λ̃)t

(
λ̃

λ

)Nt

(3)

is a true (P,F)-martingale which satisfies EP [Yt] = Y0 = 1 for all 0 ≤ t ≤ T .
Moreover, Y is clearly strictly positive. Hence D = YT is a strictly positive
FT -measurable random variable, which satisfies EP [D] = 1. Therefore, we can
define a probability measure Q on FT by dQ = D dP , which is equivalent to P .
Moreover, its density process Z is given by

Zt := EP [D| F t] = EP [YT | F t] = Yt, P.a.s. (4)

for all t ∈ [0, T ]. Therefore, in addition, we have shown in EX 9-3 b)

dZt =
λ̃− λ
λ

Zt− dÑt. (5)

b) Using that for P -almost all ω, we have ∆Ns ∈ {0, 1} for all s ∈ (0, T ], we have
P.a.s. for all s ∈ (0, T ]

Zs−
Zs

∆Ns =

(
λ

λ̃

)∆Ns

∆Ns =
λ

λ̃
∆Ns. (6)

Recalling that we have P.a.s. for all t ∈ [0, T ]

[Ñ ]t =
∑

0<s≤t

∆N2
s =

∑
0<s≤t

∆Ns = Nt, (7)

using the properties of the quadratic variation and (5), we get P.a.s. for all t ∈
[0, T ]∫ t

0

1

Zs
d[Z, Ñ ]s =

∫ t

0

λ̃−λ
λ
Zs−

Zs
d[Ñ ]s =

∑
0<s≤t

λ̃− λ
λ

Zs−
Zs

∆Ns

=
∑

0<s≤t

λ̃− λ
λ

λ

λ̃
∆Ns =

λ̃− λ
λ̃

∑
0<s≤t

∆Ns =
λ̃− λ
λ̃

Nt. (8)

c) By Girsanov’s theorem and part b) it follows that

Ñt −
∫ t

0

1

Zs
d[Z, Ñ ]s = Ñt −

λ̃− λ
λ̃

Nt = Nt − λt−Nt +
λ

λ̃
Nt

=
λ

λ̃
(Nt − λ̃t), t ∈ [0, T ], (9)

is a local (Q,F)-martingale. Since λ

λ̃
6= 0 is a constant and since local martin-

gales form a vector space, it follows that Nt − λ̃t, t ∈ [0, T ], is a local (Q,F)-
martingale, too.
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4. a) Since the L1 norm is a composition of two norms it is again a norm. To show
completeness, it suffices to check that for any sequence

(fn)n ⊆ L1(Ω;D([0,∞))

such that
∑∞

k=1 ‖fk‖L1 < ∞ the limit limn→∞
∑n

k=1 fk exists. With the triangle
inequality we have

‖
n∑
j=1

‖fj‖∞‖L1(P ) ≤
n∑
j=1

‖‖fj‖∞‖L1(P ) ≤
∞∑
j=1

‖fj‖L1 .

Therefore, by monotone convergence theorem we have that

‖
∞∑
j=1

‖fj‖∞‖L1(P ) <∞.

In particular, we have
∑∞

j=1 ‖fj‖∞ < ∞ P-.a.s. Consequently, for ω ∈ Ω and
t ≥ 0 the function

f(ω, t) =
∞∑
j=1

fj(ω, t)

exists a.s. and the series converges a.s. uniformly in t. In particular, f has RCLL
trajectory. Finally, since

‖f(ω)−
n∑
j=1

fj(ω)‖∞ ≤
∑
j≥n+1

‖fj(ω)‖∞ ≤
∞∑
j=1

‖fj(ω)‖∞ ∈ L1(P ).

The claim now follows from dominated convergence.

b) Now, let (Mn)n∈N ⊆ H1 be a Cauchy sequence. By construction, (Mn)n∈N ⊆
L1(Ω,D([0,∞))). Therefore, by part (a) there exists a M ∈ L1(Ω,D([0,∞)))
such that ‖Mn −M‖L1 → 0 as n→∞. It remains to check that M is a martin-
gale. Note that for all t ≥ 0

‖Mn(t)−M(t)‖L1(P ) ≤ ‖Mn(t)−M(t)‖L1 → 0. (10)

Hence, M is a martingale by Ex 3-2.

5. Matlab Files

1 f u n c t i o n [ e x p l e f t , e x p r i g h t ]= bmsc104anew
2 % In t h i s e x e r c i s e we s i m u l a t e d t h e e x p e c t a t i o n o f $cos (

\ i n t _ 0 ^1 s ds +
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3 % B_1 ) where B i s a P−BM by u s i n g Girsanov ’ s Theorem ,
t h a t i s we check i t

4 % i s e q u a l t o E[ exp ( \ i n t _ 0 ^1 s dB_s −1/2 \ i n t _ 0 ^1 a_s ^2
ds ) cos ( B_1 ) ] .

5 t i c
6 %% parame te r i n p u t
7 % h o r i z o n
8 T=1;
9 % sample s i z e

10 Nplo t =10^4;
11 % g r i d p o i n t s
12 M=10^3;
13 % t i m e s t e p
14 d t = T /M;
15
16 %% S i m u l a t i o n
17 % BM
18 PBM = [ z e r o s ( 1 , Np lo t ) ; s q r t ( T /M) ∗cumsum ( randn (M, Nplo t ) ) ] ;
19
20 % a p p r o x i m a t i o n o f t h e i n t e g r a l \ i n t _ 0 ^1 s dB_s ( c f . EX

8−4)
21 a g r i d = repmat ( ( 0 : d t : T ) ’ , 1 , Np lo t ) ;
22 I n t = [ z e r o s ( 1 , Np lo t ) ; cumsum ( a g r i d ( 1 : ( end−1) , : ) . ∗ (PBM( 2 :

end , : )−PBM( 1 : ( end−1) , : ) ) ) ] ;
23 % w e i g h t s= exp ( i n t _ 0 ^1 s d B_s−1/2 \ i n t _ 0 ^1 s ^2 ds
24 w e i g h t s = ( exp ( I n t ( end , : ) −1/6) ) ;
25
26 % LHS o f ( 1 )
27 e x p l e f t = mean ( cos (PBM( end , : ) + 1 / 2 ) ) ;
28 % RHS o f ( 1 )
29 e x p r i g h t = mean ( w e i g h t s .∗ cos (PBM( end , : ) ) ) ;
30
31 t o c


