ETH Ziirich FS 2015
D-MATH Coordinator
Prof. Dr. Josef Teichmann Ren Liu

Brownian Motion and Stochastic Calculus
Sketch of Solution Sheet 2

1. a) We need to show that for any n > 1l and any 0 < ¢; < #p... < t, < 1
the random vector (X, , ..., X;, ) is a Gaussian vector. Fix any n > 1 and any
0 <t < ty.. < t, < 1.1t suffices to show that (X;,,..., X;, ) is the image
of a linear transformation of another Gaussian vector. From Proposition 1.4 in
the lecture notes, we know that Brownian motion W is a Gaussian process. We
distinguish between two cases:
case I: t, <1
In this case, the vector (X4, ..., X3, ) is the image of the Gaussian vector (W, ..., W, W1)
under the linear map

1, i=7€{l,..,n},
A: R — R" defined by A := (ay;), a;j = { —t;, j=n+1,ie€{l,..,n}
0 else.

case 2: t, =1

In that case, the vector (X3, , ..., X3, ) is the image of the Gaussian vector (W, , ..., W, W)
1, i=j7€{l,...,n—1}

under the linear map B: R” — R™ definedby b;; = ¢ —t;, j=mn,ie€{l,...,n—1}
0 else.

In both cases, (X, , ..., Xy, ) is the image of a linear transformation of a Gaussian

vector, hence we are done.
For any ¢ € [0, 1] we have

E[X,| = E[W, — t Wy] = 0.

Forany 0 < s,t < 1, using that Cov(W;, W) = t A s (see Proposition 1.1.4), we
have

Cov(Xy, X5) = Cov(W, — t Wy, Wy — s W)
= Cov(Wy, Wy) — s Cov(Wy, Wy) — t Cov(Wy, W) + ts Cov(Wy, W)
=tAs—1s.

Bitte wenden!



b) Take any ¢ € (0, 1). We show that the increment X; — X;, X; — X, are correlated.
In the same way as above we obtain that

COV(X1 — Xt, Xt — Xo) = COV(—Wt +tW1, Wt — tWI) = t(t — 1) # 0.

2. Let (X,,),en be a sequence of random variables with X,, ~ A (u1,,, 02) foreachn € N,
Since (X, )nen converges in probability to X, (X,, — X ),en converges in probability
to 0 and hence (X,, — X),en converges in distribution to 0.
Fix any n € N. The sequence (X, — X} )ren converges in probability to X,, — X and
hence (X, — X)ren converges in distribution to X,, — X. Now, since by assumption
(X1 )nen is @ Gaussian process, we get that for each k, X,, — X}, is normal distributed.
Thus, we deduce from the hint that X,, — X is normal distributed. Since n € N
was arbitrarily chosen, we get that (X,, — X),cn is a sequence of Gaussian random
variables. Moreover, since (X,, — X ),en converges in distribution to 0, we deduce
again from the hint that

E[X, — X]— 0 and Var(X, — X)— 0 as n — oc.
As a consequence, we get directly the L? convergence of X" to X, since

1X, — X122 = E[|X, — XP] = (E[X, — X])* + Var(X,, — X).

3. Let P = .-, P, By definition, (X,,),>¢ is independent with respect to P if and
only if foralln € Ny, Ag € Sy, ..., A, € S, we have

P[XO S Ao, o ,Xn € An] = H?:QP[XZ S Az] - H?:OPZ[A’L]

On the other hand, the defining properties of Ionescu-Tulcea Theorem states that for
every n

PlXo € Ap,.... Xy € A,] = IIL BA;].

Therefore, (X, ),>0 is independent with respect to P if and only if P = P.

4. Matlab Files

1 function bmsc24

2% In this exercise we simulate 10 smaple paths of a
drifted BM X= 1+2t+2W_t

3 tic

4 9% parameter input

5% horizon

Siehe nachstes Blatt!



simulated BM

value

Abbildung 1: 10 sample paths of a standard BM

6 T=1;

7% sample size

8 Nplot=10;

9% grid points

10 M=1073;

11% volatility and drift coeff
12 sigma=2;

13 driftcoeff=2;

14

15% Simulate BM with normal increments
16 BM = [zeros(1,Nplot);sqrt(T/M)*cumsum(randn (M, Nplot)) |;
17% the process X

18 timegrid= 0:T/M:T;

19 drift=repmat(timegrid ’,1,Nplot);

20 X=1+driftcoeffxdrift+sigma=BM;

21

22 %plot the sample paths

23 plot(timegrid ,X)

24 title (’simulated BM’);

25 xlabel (’time’);

26 ylabel (’value’);

27 toc



