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1. a) Fixanyt € R. Since Brownian motion B is a Gaussian process, we get by defi-
nition that X, is Gaussian distributed. It remains to check its mean and variance:

E[Xt] - 0,
Var(X;) = e e =1.

b) Fix any n € N and any ¢4, to, ..., ¢, > 0. It is enough to check that

(X—tu X—tza s} X—tn) Léw (ti Xt2> e th)

From the invariance by time inversion property of Brownian motion (cf. Propo-
sition 1.1 in Section 2.1)), we get that for any ¢, ...,¢, > 0

~ ~ ~ Law
(tlBl/ﬁ?tQBl/fy"'7t'rLBl/fn) - (Bﬁ? fg?"‘ann)'
Therefore, for t; := e 2, := 1,...,n, we get that

t t t
(Xt Xty s Xot,) = (€ Bomsny, €2 Buosts, ..., € By
Law _ _ —
= (6 t1B€2t1 ; e t2B€2t2, ceey (& tn Bthn)

— (th,Xt27 ...,th).

2. 1) = 4) This follows directly from the uniform integrability of the family { E[Y'|G] | G C
F}.

4) = 2) As (X})i>o is uniformly integrable, it is bounded in £, i.e. sup,~, F[| X;|] <
0. Applying the supermartingale convergence theorem, we obtain that X, :=
lim; o, X; exists a.s., and X, € £ by Fatou’s lemma. By definition, as (X;)¢>¢
is adapted, X, is F..-measurable. Moreover, by the uniform integrability of
(X¢)e>o0, it converges also in L'to X .

Bitte wenden!



2) = 3) From X; — X, in £!, we conclude that also for any ¢ > 0 and A € F; we
have
X;14— Xooly in L' fort — oo.

Therefore, as (X;):>o is a martingale, we have for any ¢ > 0 and A € F; that

E[X 1A] = hm E[Xt-i-s 1A] = lim E[Xt 1A] E[Xt 1A],

S—r00
which implies that F[X|F;] = X;, and hence (X});c[0,o] is @ martingale.
3) = 1) Thisisclear for Y := X .

Finally, if 1)-4) hold true, then we have like in the proof of 2) = 3) that for any ¢ > 0
and A € F,
E[Xo14] = E[X,14] = E[Y 14], (1)

as X; = E[Y|F]. Therefore, (1) holds true for A € |, - The collection of sets
-~ {A e F ‘ E[Xo14] = E[Y 1A]}

is a Dynkin system and contains Utzo F:, which is closed under finite intersections.
By the Dynkin system theorem, we conclude that D contains F., and thus X, =
EY|Fu].

3. We begin with the first equality: o(C(S)) = B(S). If h is continuous, then {h > ¢}
is open for all ¢ € R, therefore h is B(S) measurable and we have C. Conversely,
let A C S be closed, then h(s) := min(1,d(s,A)) is in C(S) and A = {h = 0},
therefore A € o(C(.5)) and we have D.

For the second claim notice that for every ¢ € [0, 1] the map x — x(¢) is a continuous
map from S to R. Therefore, 0(Z) C o(C(S)) = B(S).

Conversely, since the metric space S is separable, every open set in S can be written
as a countable union of balls and because

x) = U Us—im(z), with U.(x) :={y € S|d(y,z) < e},

neN

it suffices to show that every closed e- ball is in o(Z). Indeed,

U.(x) := {y € Sld(y,z) < &}
= ({y € Sly(i/n) — a(i/n)| < £,i=0,1,...,n} € 0(Z).

neN

Therefore, B(S) C o(Z). Finally, if X is measurable, then for every ¢; € [0, 1] we
have X;, = F}, o X with F}, : (S,B(S)) — (R, B(R)) with f — f(t;). We see that

Siehe nachstes Blatt!



X, 1s measurable, because X is measurable and F}, is continuous. Conversely, if all
X, are measurable then for Z € Z we have

XNZ) = {weQX, (W) eA, i=1,..n}

1=1

Hence, X is measurable.

4. Matlab Files

1 function bmscex34

2% In this exercise we simulate Brownian motion using the
Wiener—Levy

3% Representation (see Corollary 1.(5.16) in the lecture
notes)

4

5% upper bound on n

6 nmax=12;

7% number of iid normal variables

8§ N=sum (2.7[1:nmax]) ;

9% number of sample paths

10 M=10;

11 % final time

12 T=1;

13 % number of grid points

14 gridpoi1=2000;

15% time grid

16 grid=0:T/ gridpoi1:T;

17% iid std normal random variables

18 Y=randn (N,M) ;

19% output matrix (N,M)=(Nx1)x(1*M) matrix, initialize for
n=0: Y_Oxphi_O(t)

20 out=grid *xrandn (1 M) ;

21

22 % use the definition of WAN

23 for n=1:nmax

24 for k=1:(2"n)

25 Y formula 1.(5.8)

26 out=out+(schauderba(n,k, grid)) «xY(2*(n—1)+k,:) ;
27 end

28 end

Bitte wenden!



BM with Wiener-Levy representation
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Abbildung 1: 10 sample paths of a BM

29 plot(grid,out)

30 title ('BM with Wiener—Levy representation’);

31 xlabel (’time’);

32 ylabel (’value’);

33 end

34

35

36 function [ value ]J=schauderba(n,k,t)

37 % the function implements the schauderbasis function see
definition I (5.7)

38 indl=t> (2xk—2)*x2*(—(n+1));

39 ind2=t<= (2xk—1)*2"(—(n+1));

40

41 ind3=1—ind2;

42 ind4=t <=2xk*x2"(—(n+1));

43

4 % Definition of the Schauder basis function definition [
(5.7)

45 value=(ind1 .xind2).%x27(n/2) .x(t—(k—1)%2"(—n)) ...

46 —(ind3 .xind4) .%2"(n/2) .x(t—k*2"(—n) ) ;

47 end



