
ETH Zürich FS 2015
D-MATH Coordinator
Prof. Dr. Josef Teichmann Ren Liu

Brownian Motion and Stochastic Calculus
Sketch of Solution Sheet 7

1. a) For the one direction, let f : [0,∞)→ R be of finite variation. We define

f1(t) :=
|f |(t) + f(t)

2
and f2(t) :=

|f |(t)− f(t)

2
,

where |f |(t) denotes the variation of f . We claim that both f1, f2 are non decrea-
sing. We first show that |f | is non decreasing. For that purpose, fix any 0 ≤ s < t
and denote by Πs and Πt the set of finite partition of [0, s] and [0, t], respectively.
Moreover, let Πs;t be the set of finite partitions of [0, t] such that s is a grid point,
i.e. s = ti for some ti. Then, we see that

|f |(s) ≤ sup
Πs;t

∑
ti∈Π

∣∣f(ti+1)− f(ti
)∣∣ ≤ sup

Πt

∑
ti∈Π

∣∣f(ti+1)− f(ti
)∣∣ = |f |(t).

So we conclude that |f | is indeed non decreasing. We denote by Π[s,t] the set of
finite partitions of [s, t]. Then, we have

sup
Πs;t

∑
ti∈Π

∣∣f(ti+1)−f(ti
)∣∣ = sup

Πs

∑
ti∈Π

∣∣f(ti+1)−f(ti
)∣∣+ sup

Π[s,t]

∑
ti∈Π

∣∣f(ti+1)−f(ti
)∣∣.

Now, to see that f1 is non decreasing, it suffices to show that for any 0 ≤ s < t,

|f |(t)− |f |(s) ≥ −
(
f(t)− f(s)

)
.

To see this, observe that

|f |(t)− |f |(s) ≥ sup
Πs;t

∑
ti∈Π

∣∣f(ti+1)− f(ti
)∣∣− sup

Πs

∑
ti∈Π

∣∣f(ti+1)− f(ti
)∣∣

= sup
Π[s,t]

∑
ti∈Π

∣∣f(ti+1)− f(ti
)∣∣ ≥ −(f(t)− f(s)

)
.

To show that f2 is non decreasing, it suffices to show that

|f |(t)− |f |(s) ≥ f(t)− f(s),
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which we get by applying the same argument as for f1.
For the other direction, let f = f1−f2, where f1 and f2 are non decreasing. Then
we have for any t ≥ 0 and any partition Π of [0, t] that∑

ti∈Π

∣∣f(ti+1)− f(ti
)∣∣ =

∑
ti∈Π

∣∣∣(f1(ti+1)− f2(ti+1)
)
−
(
f1(ti)− f2(ti)

)∣∣∣
≤
∑
ti∈Π

∣∣f1(ti+1)− f1(ti
)∣∣+

∑
ti∈Π

∣∣f2(ti+1)− f2(ti
)∣∣

≤ f1(t)− f1(0) + f2(t)− f2(0).

Thus, we see that for every t ≥ 0

|f |(t) = sup
Π

∑
ti∈Π

∣∣f(ti+1)− f(ti
)∣∣ <∞.

Remark: f1, f2 are not unique.

b) Define f1 = |f | and f2 := |f | − f . We deduce from a) that they are both non
decreasing and of course f = f1 − f2. Moreover, due to the hint, both f1 and
f2 are continuous. Let µf1 and µf2 be the corresponding measures defined in the
exercise. Since µf2

(
[0, t]

)
= f2(t) ≤ 2|f |(t) = 2µ|f |([0, t]), for every t ≥ 0, we

conclude that µf2 ≤ 2µ|f | on B
(
[0,∞)

)
. Thus, we see that∫ ∞

0

|g(s)|µf1(ds) <∞,
∫ ∞

0

|g(s)|µf2(ds) <∞.

Therefore, ∫ ∞
0

g(s)µf1(ds)−
∫ ∞

0

g(s)µf2(ds)

is well-defined. To show that
∫
g df is well-defined, it remains to show that the

definition ∫
g(s) df(s) :=

∫
g(s)µf1(ds)−

∫
g(s)µf2(ds)

is independent of the choice of f1, f2. Let f 1, f 2 be two other functions with the
desired properties. Fix any t ≥ 0. We have for g(s) := 1[0,t](s) that for any u ≥ 0∫ u

0

g(s)µf1(ds)−
∫ u

0

g(s)µf2(ds) = f 1(t ∧ u)− f 1(0)− f 2(t ∧ u) + f 2(0)

= f(t ∧ u)− f(0)

= f1(t ∧ u)− f2(t ∧ u) + f2(0)

=

∫ u

0

g(s)µf1(ds)−
∫ u

0

g(s)µf2(ds).

Thus, we conclude that the same holds true for g(s) := 1A, where A ∈ B(R+).
We conclude that the same holds true for general g Borel by measure theoretical
induction.
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2. a) For M ∈ Mc
0,loc, let (τn)n∈N be a localizing sequence of stopping times for M

such that (M2 − 〈M〉)τn ∈Mc
0.

Without loss of generality, we can assume that M τn is bounded (otherwise, con-
sider the stopping time σn := inf

{
t > 0

∣∣|Mt| > n
}

and take τ ′n := τn ∧ σn as
localizing sequence). We then have that

E[M2
τn∧t] = E[〈M〉τn∧t]. (1)

We show the first implication. LetM ∈ H2,c
0 ; then by the martingale convergence

theorem, Mt → M∞ ∈ L2 a.s. and in L2. Moreover, Doob’s inequality gives
M∗
∞ = supt |Mt| ∈ L2. We can therefore apply the dominated convergence

theorem on the left-hand side of (1) for n → ∞.On the other hand, 〈M〉 is
increasing, so that the monotone convergence theorem applied on the right-hand
side of (1) for n→∞ gives

E[M2
t ] = E[〈M〉t] ∀ t ≥ 0.

By applying again dominated/monotone convergence theorem for t → ∞, we
finally obtain that

E[〈M〉∞] = E[M2
∞] <∞.

Conversely, assume that E[〈M〉∞] < ∞. By passing to the limit in (1) with the
monotone convergence theorem, we obtain that

E[M2
τn∧t] = E[〈M〉τn∧t] ≤ E[〈M〉∞] =: K <∞. (2)

Therefore, (Mτn∧t)n∈N is bounded in L2 and hence uniformly integrable. We can
thus pass to the limit in the equality

E[Mτn∧t|Fs] = Mτn∧s ∀ n ∈ N,

obtaining thatE[Mt|Fs] = Ms, so thatM is a martingale. Moreover, by applying
Fatou’s lemma to (2), we obtain that

E[M2
t ] ≤ lim inf

n→∞
E[M2

τn∧t] ≤ K <∞,

so that M is bounded in L2, which finally yields that M ∈ H2,c
0 .
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b) Let M be a true martingale and fix a > 0. Then the stopping theorem implies

Mτ = E[Ma|Fτ ],

for all stopping times τ with τ ≤ a P -a.s. Since Ma ∈ L1, we then obtain that
Xa is uniformly integrable.

Conversely, assume we have a local martingale M of the class (DL), and let
(τn)n∈N be a localizing sequence. Consequently, since Xt is uniformly integrable
for all t ≥ 0, we obtain that

{
Mτn∧t| n ∈ N

}
is uniformly integrable. Therefore,

the fact that Mτn∧t
n→∞−→ Mt P -a.s. implies that

Mτn∧t
n→∞−→ Mt in L1.

As before, we can therefore pass to the limit in the equality E[Mτn∧t|Fs] =
Mτn∧s, obtaining that E[Mt|Fs] = Ms, so that M is a martingale.

3. a) Since the 3-dimensional Brownian motion B = (B1, B2, B3) takes values in the
open set D := Rd \{−x} P -a.s., we can apply Itô’s formula to Mt = f(Bt) with
f : D → (0,∞) given by f(y) := 1

|x+y| .

For i = 1, 2, 3, we have

∂f

∂yi
(y) = − xi + yi

|x+ y|3
,

∂2f

(∂yi)2
(y) =

−|x+ y|2 + 3(xi + yi)2

|x+ y|5
.

It follows that ∆f = ∂2f
(∂y1)2

+ ∂2f
(∂y2)2

+ ∂2f
(∂y3)2

= 0 on D. Hence, Itô’s formula
yields

Mt = M0 +

∫ t

0

∇f(Bs) dBs +
1

2

∫ t

0

∆f(Bs) ds =
1

|x|
−

3∑
i=1

∫ t

0

xi +Bi
s

|x+Bs|3
dBi

s.

Thus, M is a continuous local martingale.
Let us show the second part. For t > 0, using the distribution of the 3-dimensional
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Brownian motion, we obtain that

E
[
|Mt|2,1{|Mt|≥ 2

|x|}

]
= (2πt)−

3
2

∫
|x+y|≤ |x|

2

1

|x+ y|2
exp

(
−|y|

2

2t

)
dy

= (2πt)−
3
2

∫
|y|≤ |x|

2

1

|y|2
exp

(
−|y − x|

2

2t

)
dy

≤ (2πt)−
3
2

∫
|y|≤ |x|

2

1

|y|2
exp

(
−(|x| − |y|)2

2t

)
dy

≤ (2πt)−
3
2 exp

(
−|x|

2

8t

) ∫
|y|≤ |x|

2

1

|y|2
dy

= (2πt)−
3
2 exp

(
−|x|

2

8t

)∫ |x|
2

0

∫ 2π

0

∫ π

0

1

r2
r2 sinϑ dϑ dφ dr

≤ C (2πt)−
3
2 exp

(
−|x|

2

8t

)
whereC is a finite positive constant. Now, the function t 7→ (2πt)−

3
2 exp

(
− |x|

2

8t

)
is continuous on (0,∞) and converges to 0 as t → 0 and t → ∞, hence it is
bounded on (0,∞). Therefore, we conclude that

sup
t≥0

E
[
|Mt|2

]
≤ 4

|x|2
+ sup

t≥0
E
[
|Mt|2,1{|Mt|≥ 2

|x|}

]
<∞.

It follows that M is bounded in L2.
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b) For t > 0, using spherical coordinates,

E[Mt] = (2πt)−3/2

∫
R3

1

|x+ y|
exp

(
−|y|

2

2t

)
dy

= (2πt)−3/2

∫
R3

1

|y|
exp

(
−|y − x|

2

2t

)
dy

≤ (2πt)−3/2

∫
R3

1

|y|
exp

(
−(|y| − |x|)2

2t

)
dy

= (2πt)−3/2

∫ ∞
0

∫ 2π

0

∫ π

0

1

r
exp

(
−(r − |x|)2

2t

)
r2 sinϑ dϑdφdr

= 4π(2πt)−3/2

∫ ∞
0

r exp

(
−(r − |x|)2

2t

)
dr

= 4π(2πt)−3/2

∫ ∞
−|x|

(r + |x|) exp

(
−r

2

2t

)
dr

= 4π(2πt)−3/2

(∫ ∞
−|x|

r exp

(
−r

2

2t

)
dr + |x|

∫ ∞
−|x|

exp

(
−r

2

2t

)
dr

)
≤ 4π(2πt)−3/2

([
−t exp

(
−r

2

2t

)]∞
−|x|

+ |x|
√

2πt

)

= 4π(2πt)−3/2

(
t exp

(
−|x|

2

2t

)
+ |x|

√
2πt

)
= O

(
t−

1
2

)
(t→∞).

Hence, E[Mt]→ 0 as t→∞. Since E[M0] = 1
|x| > 0, M cannot be a martinga-

le.

4. Matlab Files

1 f u n c t i o n prob =bmsc74
2 % In t h i s e x e r c i s e we compute t h e p r o b a b i l i t y o f t h e T_ (

B_1 ( 0 ) ) b e i n g
3 % f i n i t e where T_ ( B_1 ( 0 ) ) i s t h e f i r s t t i m e t h a t a t h r e e

d i m e s i o n a l BM
4 % s t a r t i n g a t x h i t s t h e u n i t b a l l B_1 ( 0 )
5 t i c
6
7 % sample s i z e
8 N=10^4;
9 % h o r i z o n

10 T=200;
11 % g r i d p o i n t s
12 d t =10^(−2) ;
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13 % r a d i u s
14 R=1;
15 % s t a r t i n g p o i n t
16 x = [ 1 ; 1 ; 1 ] ;
17
18 % S i m u l a t e BM w i t h normal i n c r e m e n t s s t a r t i n g a t x
19 BM1 = x ( 1 ) +[ z e r o s ( 1 ,N) ; s q r t ( d t ) ∗cumsum ( randn ( T / dt ,N) ) ] ;
20 BM2 = x ( 2 ) +[ z e r o s ( 1 ,N) ; s q r t ( d t ) ∗cumsum ( randn ( T / dt ,N) ) ] ;
21 BM3 = x ( 3 ) +[ z e r o s ( 1 ,N) ; s q r t ( d t ) ∗cumsum ( randn ( T / dt ,N) ) ] ;
22
23 % p o i n t s be tween [ 0 , T ]
24 m= T / d t +1 ;
25
26 % t a u =0 , T_ ( B_1 ( 0 ) )= i n f t y (>T ) o t h e r w i s e 1
27 t a u = z e r o s ( 1 ,N) ;
28
29 f o r i =1 :m
30 % compute t h e norm o f BM
31 norm= s q r t (BM1( i , : ) . ^2+BM2( i , : ) . ^2+BM3( i , : ) . ^ 2 ) ;
32 % i s norm (BM) < R?
33 i n d = norm < R ;
34 % i f y e s
35 i f sum ( i n d ) >0;
36 % s e t t a u =1
37 t a u ( i n d ) = ones ( 1 , sum ( i n d ) ) ;
38 end
39 end
40
41 % compute t h e p r o b a b i l i t y
42 prob = mean ( t a u ) ;
43 t o c


