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1. a) For the one direction, let f : [0, 00) — R be of finite variation. We define

1) + f() 1) — ()

fl(t) = 9 9 )

and  fy(t) :=

where | f|() denotes the variation of f. We claim that both f;, f> are non decrea-
sing. We first show that | f| is non decreasing. For that purpose, fix any 0 < s < t
and denote by II; and II; the set of finite partition of [0, s] and [0, ¢, respectively.
Moreover, let I1; be the set of finite partitions of [0, ¢] such that s is a grid point,
1.e. s = t; for some ¢;. Then, we see that

1fl(s <SupZ!f i+1) |<supZ}f iv1) — f(t:)]| = |£1(t)

”tel’[ ttel‘[

So we conclude that | f| is indeed non decreasing. We denote by IIj, 4 the set of
finite partitions of [s, t|. Then, we have

SUPZ}JC z+1 ‘_Supz‘f z+1 |+SupZ|f H—l )‘

”ten SteH ”tel‘[

Now, to see that f; is non decreasing, it suffices to show that for any 0 < s < ¢,

1) = 1 f1(s) = =(f(t) = f(s)).

To see this, observe that

|f|() |f| >Sup2}f H—l ‘_Supz‘f z+1 )|
Wsit 4 emn s yen
SUPZ‘f i) — f(t:)] = = (f() = f(s)).
H[“teH

To show that f5 is non decreasing, it suffices to show that

[F1) = [f1(s) = f(t) = f(s),
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b)

which we get by applying the same argument as for f;.
For the other direction, let f = f; — f5, where f; and f; are non decreasing. Then
we have for any ¢ > 0 and any partition IT of [0, ] that

Z | f(tis) — f(t)] = Z ‘(fl(ti—i—l) — fo(tiva)) — (f(ts) — f2(tz‘))‘

t; €11 t; €11
< Z |fitin) = filts)| + Z | foltir) = fa(t:)|
t;, €Il t;, €Il

< fi(t) = f1(0) + fa(t) — f2(0).
Thus, we see that for every t > 0
| fI(t —SUPZU i+1) (tz)‘ < 0.
t;ell

Remark: f;, f; are not unique.

Define f; = |f| and fy := |f| — f. We deduce from a) that they are both non
decreasing and of course f = f; — fo. Moreover, due to the hint, both f; and
f2 are continuous. Let s, and p, be the corresponding measures defined in the

exercise. Since 14, ([0,¢]) = fo(t) < 2|f](t) = 24/([0, ¢]), for every t > 0, we
conclude that pis, < 247 on B([O oo)) Thus, we see that

| talnntas <oe [ lato)stas) <

[ o st = [ ats) matas

is well-defined. To show that f g df is well-defined, it remains to show that the
definition

Therefore,

[o@ )= [ untds)~ [ g(s) sl

is independent of the choice of fi, f». Let f, f, be two other functions with the
desired properties. Fix any ¢ > 0. We have for g(s) := 1jo4(s) that for any v > 0

/0 " g(s) iz, (ds) — / (5 iz, (ds) = Tt A w) — Fo(0) — Falt A w) + F(0)

= f(t A u) = £(0)
= [t Au) = fat Au) + £2(0)

_ /Ou g(s) g, (ds) — /Ou 9(s) pis, (ds).

Thus, we conclude that the same holds true for g(s) := 14, where A € B(R.).
We conclude that the same holds true for general g Borel by measure theoretical
induction.

Siehe nichstes Blatt!



2.

a) For M € Mg, let (7,)nen be a localizing sequence of stopping times for M

such that (M? — (M))™ € M.

Without loss of generality, we can assume that /™ is bounded (otherwise, con-
sider the stopping time o, := inf {¢ > 0|[M,| > n} and take 7}, := 7,, A 0,, as
localizing sequence). We then have that

E[M? )] = E[(M)r, . (1)

We show the first implication. Let M € Hg’c; then by the martingale convergence
theorem, M, — M., € L? a.s. and in L?. Moreover, Doob’s inequality gives
M* = sup,|M;| € L? We can therefore apply the dominated convergence
theorem on the left-hand side of (1) for n — ©0.0n the other hand, (M) is
increasing, so that the monotone convergence theorem applied on the right-hand
side of (1) for n — oo gives

E[M{] = E[(M);] Vt>0.

By applying again dominated/monotone convergence theorem for ¢ — oo, we
finally obtain that
E[(M)s] = E[M2)] < co.

Conversely, assume that E[(M )] < oco. By passing to the limit in (1) with the
monotone convergence theorem, we obtain that

E[M? ] = E[(M);,n] < E[(M)oo] =1 K < 00, 2)

Therefore, (M., n¢)nen is bounded in L? and hence uniformly integrable. We can

n

thus pass to the limit in the equality
E[M | Fs) = Mrps V€N,

obtaining that F[M,|F,] = M, so that M is a martingale. Moreover, by applying
Fatou’s lemma to (2), we obtain that

E[M?] < liminf E[M? ,,] < K < o0,

n—00 n

so that M is bounded in L2, which finally yields that M € /HS’C.
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b) Let M be a true martingale and fix a > 0. Then the stopping theorem implies
MT = E[Malff]a

for all stopping times 7 with 7 < a P-a.s. Since M, € L', we then obtain that
X, is uniformly integrable.

Conversely, assume we have a local martingale M of the class (DL), and let
(Tn)nen be a localizing sequence. Consequently, since X, is uniformly integrable
for all £ > 0, we obtain that { ot M E N} is uniformly integrable. Therefore,

the fact that M, ¢ iy — M, P-a.s. implies that

— .
M, v =5 M;in L*.

As before, we can therefore pass to the limit in the equality E[M, r¢|Fs] =
M. rs, obtaining that F[M,|F;] = M, so that M is a martingale.

n

a) Since the 3-dimensional Brownian motion B = (B!, B?, B®) takes values in the
open set D := R?\ {—x} P-a.s., we can apply Itd’s formula to M; = f(B;) with
f:D — (0,00) givenby f(y) := —

lz+yl

For: = 1,2, 3, we have

of b+t 0% f

O ()= - —|z +y)* +3(z" + y')?
Ay’ lz+yP" (0y)?

lz +yp

(y) =

It follows that Af = (88;];2 + (8‘9;2@2 + ((,?;J)Q = 0 on D. Hence, 1td’s formula
yields

t t 7
M, = Mo+/ Vf(Bs)stJr%/ Af(B, ds— 2/ |x '+ Bi B!,
0 0

z + By?

Thus, M is a continuous local martingale.
Let us show the second part. For ¢ > 0, using the distribution of the 3-dimensional
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Brownian motion, we obtain that

-3 1 lyl”
B[ ] = o0t [ e (‘ o)W

|yl <12
3 1 ly — xf?
= (2 — =
(2mt) 2 / WE exp( 57 dy
ly|< 12l
s 1 (|| = [y])
< (27t — — d
(27t) "2 / e exp( o
y|< 1zl
_ |z|? / 1
< (2mt) 2 S i
e ton (<) [ g

:(me)gexp( )/ /Qﬂ/ —57*sind dd do dr

3 ElS
< C (27Tt> 2 exp —g

. . .o, . . 2
where C is a finite positive constant. Now, the function ¢ — (27rt)_% exp <— %)

is continuous on (0, 00) and converges to 0 as ¢ — 0 and t — oo, hence it is
bounded on (0, c0). Therefore, we conclude that

4
sup B [|M;[*] < —3 —|—supE [|Mt\ 71{|Mt|2ﬁ}] < 00

0 []?

It follows that M is bounded in L2.

Bitte wenden!



b) For ¢ > 0, using spherical coordinates,

E[M,) = (2nt) /2 Lexp (—w> dy
rs [T+ Y]

_ 1 ly — x|?
— @) [ Zexp (2T g
@rt) = ) |yrexp< )Y

_ 1 — |z|)?

2m _ 2
(27t) 3/2/ / / —exp( T 2lx|) )r2 sin ¥ dvdodr
0

D2
= 4m(2nt)” 3/2/ rexp( M) dr
2t
oo 2
7(27t) 3/2/ (r+|z]) exp( L > dr
m(2mt) 3/ /00 T exp o dr + |m|/OO exp _r dr
o} 2 ~lal 2

< 4w (2mt) 3”([ texp )} —|—|x|\/27rt>

= 47 (2mt) /2 (texp ( [z |2> + |x|\/_> ( ‘%) (t = o0).

Hence, E[M;| — 0 ast — oo. Since E[M,] = ﬁ > 0, M cannot be a martinga-
le.

4. Matlab Files

1 function prob=bmsc74

2% In this exercise we compute the probability of the T_(
B_1(0)) being

3% finite where T_(B_I1(0)) is the first time that a three

dimesional BM

4% starting at x hits the unit ball B_1(0)

5 tic

6

7% sample size

8§ N=10"4;

9% horizon

10 T=200;

11 % grid points

12 dt=10"(—-2);
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13% radius

14 R=1;

15% starting point

16 x=[1;1;1];

17

18 % Simulate BM with normal increments starting at Xx

19 BMI = x(1)+[zeros(1,N);sqrt(dt)+camsum(randn(T/dt ,N)) ];
20 BM2 = x(2)+[zeros(1,N);sqrt(dt)+xcamsum(randn(T/dt ,N)) ];
21 BM3 = x(3)+[zeros(1,N);sqrt(dt)xcamsum(randn(T/dt ,N)) ];
22

23 % points between [0,T]
24m= T/dt+1;

25

26 % tau=0, T_(B_1(0))= infty (>T) otherwise 1
27 tau= zeros(1,N);

28
29
30
31
32
33
34
35
36
37
38
39
40

for

end

i=1:m
% compute the norm of BM
norm=sqrt (BM1(i,:) .*2+BM2(i,:) ."2+BM3(1,:) ."2);
% is norm(BM) < R?
ind = norm < R;
% if yes
if sum(ind) >0;
% set tau =1
tau (ind )=ones (1 ,sum(ind));
end

41 % compute the probability
42 prob= mean(tau) ;

43

toc



