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1. Recall that for a stopping time 7 and a process (M;);>( the stopped process is defined

by (M])iz0 = (Mrat)e>o-
For K > 0, we consider the stopping time oy := inf{t > 0|(M), > K}. Since (M)
is continuous, we have that (M), < K for t < o, and therefore

E[(M%).] = B[(M),,] < K.

Hence, Ex 7-2a) gives that M ¥ € ’HS’C. We can therefore apply Tchebycheff’s and
Doob’s inequality (and use that the constant in Doob’s inequality for fixed p > 1,
denoted by C,,, is equal to (]ﬁ)p ), obtaining that

E[((M7);)?]
02

_ B[]

< A

(M%),
C'Q

P > €] <

4K

< —.

To obtain the claim, we observe that
{M7* # My} C{ok <t} ={(M) > K7},
which finally implies that
P[M; > C] = P[M; > C,ox > t| + P[M;} > C,0x <]
4K

< E+P[<M>t > K].

2. a) Without loss of generality, suppose (X;);>o is a local martingale with X, = 0
and let B be a constant such that | X;| < B for all t > 0. Let (74)xen be a
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b)

c)

localizing sequence for X, i.e. it is a non decreasing sequence of stopping times
such that (X5, )¢>0 is @ martingale for any k& and 7, ,* +o00 a.s. Fix s < ¢, by
the martingale property we have

E[Xt/\’rk | gs} = XS/\Tk a.s.

By dominated convergence theorem, which we can apply by the uniform boun-
dedness of X, we get that

E[X,|G.] = lim E[X [G.] = lim X, = X, as.

Let (73 )ken be a localizing sequence for X. Then, applying the local martingale
property, we have for any 0 < s < ¢ < T that

XS/\Tk = E[Xt/\’rk|gs} a.s.

Since X is nonnegative, we can apply Fatou’s lemma to get forany 0 < s <t <
T that

Xs = klg’go XS/\Tk = llggng[Xt/\Tk } gs} > E[h’?_l)logf ‘X't/\nC ’ gs} = E[Xt|gs]
(1)

Moreover as X is nonnegative, we obtain by applying Fatou’s Lemma that for
any t € [0, 7]

E[X:] = E[liminf X;r,, | < liminf B[ X5, ] = E[Xo] < o0

k—o0

and so (X});>o is a supermartingale.
Now, take the expectation on both sides in (1), we get

E[X,] > E[X{]

for all 0 < s <t < T In particular, using monotonicity of the expectation for a
supermartingale, we have

E[Xo] > E[X,] > E[X,] > E[Xs] forall0<s<t<T. )

Using the assumption E[X7| = E[X,], we see that the previous inequalities
in (2) are all equalities. If the inequality in (1) was strict on a set of positive
probability, we would have E[X;] > E[X,|, which gives a contradiction, and so
the equality must hold with probability one. Thus, X is a martingale.

As M is a continuous local martingale, there exists by definition a sequence of
stopping times (7},),en, P-a.s. tending to infinity, such that for each n, the stop-
ped process M := (Mr, n¢)i>0 is @ continuous martingale. Consider the se-
quence of stopping times (7, ),en defined by

Tn 1= inf{tEOHMt\ >n}
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As M, is bounded, we get that P-a.s. 7,, tends to infinity. Moreover, by (left-)
continuity of M, for any n, the process M ™ := (M, xt)+>0 is uniformly bounded
by n. Define the sequence of stopping times (S, )nen by S, = T, A 7,. By
construction, we get that P-a.s. S, tends to infinity and M5 = (Mg, a¢)i>0
is uniformly bounded by n. Moreover, using the hint, we get that for any n,

M5n = (M™)™ is a martingale.

d) Let & be a r.v. defined on (2, F, Q) such that E[|{|]] < oo and E[¢?] = oo.
Consider the process M = (M;):>o and the filtration (F;);>( given by

=

o, ifo<t<i, £ _ 00} ifo<i<i,
T e-Elg, ift>1, FE=o(¢), ift>1.

Then, by construction M is a martingale which is not locally square integrable.

3. a) This follows from the Burkholder-Davis-Gundy (BDG) inequalities (cf. Theorem
(3.15) in Chapter 4) applied to the continuous local martingale f H1yo - dM.

b) First, note that the assumption F [ fOT H? d(M)S} < oo implies fOT H2d{M), <

oo P-a.s. for each T' > 0. Hence, choosing 7,, := inf{t > 0| fot H2d{M), > n}
shows that H € L (M) and N := [ H dM is well-defined.

loc

Fix T' > 0. The “right-hand” BDG inequality for p = 1 applied to the stopped
process N7 gives

T
E { sup ]NtT\] < ClE[ (NT>OO] =O\F / H2d({M),| < .
0

0<t<oo

Being dominated by an integrable random variable, the continuous local martin-
gale N7 is actually a martingale. Since ' was arbitrary, is follows that N is a
martingale.

¢) Fix T > 0. The “left-hand” BDG inequality for p = 1 applied to M T gives

< Q.

BT = B [V < 28 s 7)) = 26 [ sup 31

1 0<t<oo C1 0<t<T

Thus, if C' > 0 is any constant bounding H7,
T
E / H2d(M),| < CE [ <M>T] < o0,
0

and part b) applies.
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4. Matlab Files

1 function error=bmsc84

2% In this exercise we approximate the stochastic
integral \int_0O"l W_s dW_s

3% and compare it with the exact solution

4 tic

59k parameter input

6 % horizon

7 T=1;

8 % sample size

9 Nsimu=10"3;

10% grid points

11 M=1073;

12

13% Simulate BM with normal increments

14BM = [zeros (1 ,Nsimu);sqrt(T/M)xcumsum(randn (M, Nsimu) ) |;

15

16 % Approximate stochastic integral with sum

17 Int = [zeros (1 ,Nsimu) ;cumsum(BM(1:(end—1) ,:) .x(BM(2:end
;) BM(1:(end—1) ,:))) ];

18

19 % Exact solution

20 timegrid= 0:T/M:T;

21 Sol = 0.5 *(BM(l:end,:).*2— repmat(timegrid ’,1,Nsimu));

22

23 9%oplot one sample path

24 plot(timegrid ,Int(:,1), r—",timegrid ,Sol(:,1),’b=")

25 xlabel(’time’);

26 ylabel (’value’);

27 legend ( "sum approximation’, ’‘exact solution’);

28 title (" approximation of stochastic integral’);

29

30 % compute the L"2 error at terminal point: \|(Sum_I—
Exact_1)\I_{L" 2}

31 error = mean((Sol(end,:)—Int(end,:))."2)"(1/2);

32 toc



approximation of stochastic integral

25 T T T
sum approximation
exact solution

value

0.2 0.4 0.6 0.8 1
time

Abbildung 1: One realization of the sum approximation and the exact solution of
fot BgdBg on [0, 1].



