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1. Without loss of generality, assume that M, = 0. Suppose first that M has variation,
denoted by Var(M), which is uniformly bounded, i.e. assume that

JK > 0 such that for P-a.e.w, Vt >0, Var(M.(w)) < K. (1)

Fix any ¢ > 0. Consider a subdivision o of the interval [0,¢] given by: 0 =ty < t; <
... < t, = t. We define its mesh size by:

o]l == olnax i1 — til.

We claim that by the martingale property of M we have for any 0 < ¢ < n — 1 that

B[(M,., - M) = B[a2,, - 222]. 2)
Indeed, if (F;);>0 is the filtration generated by M, we get by applying the martingale

property that

B(M,,, - M)* | F] = E[M2,, | F] - oMy, B[ M, | ] + 02
_ E[M;H ]—"tz} — M2

By taking the expectation in the above equality, we proved the claim. Therefore, we
deduce from (2) that

—_

E[Mf} - E[n_ (M,,,, — Mti)g].

i

I
=)

Thus, due to our assumption (1), we get

2
E[Mt} < E[Vart(M) Jmax |M,, - Mti] < KE[USI%X_ NIV
Now, take any sequence (o} )xen of subdivisions of [0, ¢] with lim ||ox|| = 0. Using
n—oo

(3), we deduce from the continuity of M (and so uniform continuity of M on [0, ¢]) and
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by using domintated convergence theorem, which we can use as Var,(M.(w)) < K
for P-a.e. w by the assumption made in (1), that

E[Mf] =0 which implies that M7 =0 P-a.s.
Since ¢ > 0 was arbitrarily chosen, we obtain that
P-as., Vt € Q., M, =0.
Using the continuity of M we obtain that
P-as., Vit >0, M, = 0.

Now, let M be a continuous martingale of finite variation starting at O without satis-
fying the additional assumption (1). Consider for any k£ € N the stopping time

7y :=inf {¢ > 0| Var,(M) > k}.

As M is an adapted continuous process, Var(M ) is continuous and adapted, too.
Hence it is easy to check that for any k, 7 is a stopping time. Moreover, 7; con-
verges to infinity as k goes to infinity, as M is of finite variation. Moreover, for any
k, the stopped process M,* = (M;*);>o is a continuous martingale of finite variation
starting at O which satisfies the additional condition (1) (for the constant K = k).
Thus, from the above result, we obtain that for any £ € N

P-as., Vt >0, M/* =0.

Thus, letting k goes to infinity, we obtain the desired result.

a) By linearity, it suffices to check the claim for monomials of the form p(z) =
2™, m € N. Note that p(W) is (left-)continuous and adapted, (and hence pre-
dictable and locally bounded). Therefore, [ p(1W)dW is well-defined, and also a
local martingale. Moreover, by Fubini’s Theorem, for all 7" > 0,

E [< / p(W)qu 5| /0 ' wEmd(w), | )

T
:E[ / meds} (5)
0
T
_ / B w2 ds (©)
0
T
=E[W?™] / s™ds < oo. (7)
0

T
This proves that (fp(W)dW) € HyC for all T > 0 by Ex 7-2 a), implying
that [ p(W)dW is a true martingale.
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b) The function f : R2 — R givenby f(,w) := ez’ coswis C2 and X, = f(t, W,).
Moreover,
of 1, of N o2 f

—t —= —f2 —t = —f2 1 —_—
(t,w) e2’ cosw, (t,w) e’ sinw, =3

ot 2 ow

Since ¢ (viewed as a process) is of finite variation, Itd’s formula yields

oy of | 2
dX; = E(t,w) dt + 8—w(t,w) dW, + 5@

1 .
= —e2'sin W, dW,,

(t,w) = —e' cos w.

(t,w) d(W1,

so X is a local martingale. Since sup,<;<7 | X¢| < ezT for each T > 0, X is a
martingale.

¢) Being adapted, left-continuous and bounded, ¢ € L2 (W) and /1 — ¢* €

loc
L2 .(W'). Moreover, for each ¢t > 0, using bilinearity of [-, -] and the fact that

[W, W’] = 0 due to independence of W and W',

[B); = |:/QdW:|t+ UMdW’]t:/Otgﬁds+/0t(1—@§)ds:t7

so Lévy’s characterisation of Brownian motion yields that B is a Brownian mo-
tion. Finally,

t t
[B,W}t:/ Qsd[W,W>3:/ 0. ds.
0 0

a) Lett > 0. Using that AV, is either O or 1, we have P-a.s.

~\ AN ~ ~
A A A=A

Using this, we arrive at

X Nt AN X\ M- T\ AN
_ -0t A _ -t A A -
s n(3) was=e (3 () )

2=\

AN; . )

b) We have N N
S, = exp (()\ Nt log(A//\)Nt) . )
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Applying the hint with f(-) = exp(), a = A — N\ B = log(X/)\) and using part
a) and X; = log(A/A)N; + (A — A\)t, we get P-as. forallt > 0

S, = exp(0) + (A — \) /Ot exp(X,_)du+ Z <exp(Xu) — exp(Xu_)>

O<u<t

. t
—1+()\—)\)/ Su—du+ > AS,
0

O<u<t
A=\ t
— HT(_/O S, Adu + Z SUANu)
0<u<t
A=\ [t A=\ [t .
=1+2"2 ] S (dN,— dw)=1+"2[ S, dN,.
A Jo A Jo

¢) It can be easily verified that Nisa (P, F)-martingale. Since X;/\’\S_ is adapted
and left-continuous, (hence predictable and locally bounded), it follows that S'is
a local (P, F)-martingale. By the hint, S is a true (P, F)-martingale if

E[ sup |Si|] = E[ sup S < 0. (10)
0<t<T 0<t<T
But since
sup Sy < CelT
0<t<T
for some constant C' > 0 and since Ny ~ Pois(AT’), we conclude that (10) is
true.

4. a) Let X = (X});>0 be a uniformly integrable, right-continuous martingale. Set
Y = Z(X™ — X7) and fix a stopping time p. We will show that E[|Y,|] < oo
and E[Y,] = 0. The assertion then follows from the hint (cf. Lemma 4.1.19 in the
lecture notes).

Since X is uniformly integrable, the stopping theorem yields E[X|F,] = X,
for any stopping time . In particular, the family {X, : v a stopping time} is
uniformly integrable (i.e., X is of class (D)), hence bounded in L!. It follows
that

EfY,[] < CIE[[Xrnol] + El[Xonol]) < o0

where C' > 0 is any constant bounding Z.

Next, we show that £[Y,] = 0. By a monotone class argument or simply measure-
theoretic induction, we may assume that Z = 1,4 for some A € F,. Then 74 :=
Tla + 00lge and 04 := 014 + 00l 4c are stopping times and

E[Yg] = E[lA(Xg/\T - XQ/\O')] = E[Xg/\m - XQ/\O'A] =0,
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b)

where we use the stopping theorem in the last equality.

If X is not uniformly integrable, then assuming that g is bounded, almost the
same proof yields that Y is a martingale (but not uniformly integrable in general),
c.f. Remark 4.(1.20) in the lecture notes.

The equality B := Z[M™ — M?,N] = Z([M,N]” — [M, N]?) follows from
bilinearity of [-, -] and from the fact that for any stopping time T,

[MT,N] = [M,N7] = [M, N]".

Next, we note that Y := Z(M™ — M?) € Mg, by part a) and localisati-
on. So [Y, N] is well-defined. We also note that the process B is continuous
and of finite variation. Moreover, since B = 0 on [0, 0], we can write B =
(Z16.001)([M, N|T — [M, N]7) to see that B is also adapted.

Setting X := (M7 — M?)N —[M™ — M?, N| € Mg, and noting that X° = 0,
we have

YN —B=Z((M" — M°)N — [M™ — M°,N]) = Z(X — X°).

By part a) and localisation, Z (X — X?) € Mg . Thus, as [Y, N] is the unique

process B of ¢V such that MN — B € MG 10e» We conclude by uniqueness that
Y,N] = B.

Clearly, H := Z1j, 7 18 left-continuous. Moreover for ¢ > 0, the second factor
in H, = (Z 1{0<t})1{t§T} is F;-measurable since 7 is a stopping time, while the
Fi-measurability of the first factor follows from the hint. Thus, H is adapted and
hence predictable. Since H is also bounded, it follows that the stochastic integral
is well-defined. Now, for any N € MG, we have

[Z(M™=M°),N] 2 Z(]M,N]"—[M, N]°) = /21]](“]] d[M,N] = /Hd[M, NJ.

Thus by the defining property of the stochastic integral, [ H dM = Z(M™—M?)
(cf. Proposition 4.2.16 in the lecture notes.)

Finally, from part a), we see that if M is a (uniformly integrable) martingale, then
[ HdM = Z(M™ — M?) is a (uniformly integrable) martingale.



