D-MATH, FS 2015

Exercise Sheet 1

- 1. (a) Let Γ be a group acting discretely and properly discontinuously on (M,g) by isometries. Observe that M/Γ is a smooth manifold and M/Γ inherits a Riemannian metric from M such that $\pi \colon M \to M/\Gamma$ is locally an isometry.
 - (b) Find an isometric immersion of the unit square torus $\mathbb{R}^2/\mathbb{Z}^2$ into \mathbb{R}^4 .
 - (c) Let v, w be a basis of \mathbb{R}^2 and let $\Gamma := \mathbb{Z} \cdot v + \mathbb{Z} \cdot w$ be the lattice they generate. Then \mathbb{R}^2/Γ is a torus with a locally Euclidean metric. Show that not all \mathbb{R}^2/Γ are isometric, even up to scale.
 - (d) Can you visualize the set of isometry classes of all such tori \mathbb{R}^2/Γ , say of area 1?
- 2. (a) The upper half-plane model of the hyperbolic plane is the set

$$\mathbb{H}^2 := \{ z \in \mathbb{C} | \Im(z) > 0 \}$$

equipped with the metric

$$g_{ij}(z) = \frac{\delta_{ij}}{y^2}, \quad z = x + iy \in H.$$

Prove that each fractional linear transformation

$$z \mapsto \frac{az+b}{cz+d}$$
, $ad-bc=1$, $a,b,c,d \in \mathbb{R}$

is an isometry of g. Hint: Show that for f holomorphic and $g_{ij} = \lambda(z)\delta_{ij}$,

$$f^*(g)(z) = |f'(z)|^2 \lambda(f(z)) \delta_{ij}.$$

(b) Find an isometry of the upper half-plane model with the disk model

$$h_{ij}(z) = \frac{4\delta_{ij}}{(1-|z|^2)^2}, \quad |z| < 1.$$

Hint: Try a fractional linear transformation with complex coefficients.

- (c) Show that the hyperbolic plane is homogenous and isotropic.
- **3.** Let $B_r^{\mathbb{H}^2}$ be a ball of (intrinsic) radius r in the hyperbolic plane.
 - (a) compute the circumference C(r) and the area A(r) of $B_r^{\mathbb{H}^2}$
 - (b) Check that $\frac{dA(r)}{dr} = C(r)$. Why should this be so?

- **4.** (a) Let $L: V \to W$ be a linear map between inner product spaces. Prove: there is orthonormal basis $v_1, \ldots, v_n, w_1, \ldots, w_m$ for V and resp. W and singular values (or principal stretches) $\lambda_1, \ldots, \lambda_k \geq 0$, $k = \min(m, n)$ such that $Lv_i = \lambda_i w_i$ for $i = 1, \ldots k$.
 - (b) Prove the singular value decomposition from linear algebra: for all $A \in M^{n \times n}(\mathbb{R})$ there exist matrices $O, O' \in O(n)$ and a diagonal matrix D such that A = ODO'.
 - (c) Prove the polar decomposition: for all $A \in M^{n \times n}(\mathbb{R})$ there exists $O \in O(n)$, S symmetric such that A = SO.
- **5.** (a) Show the metric induced on SO(n) by the inclusion in $\mathbb{R}^{n \times n} = \mathbb{R}^{n^2}$ is bi-invariant (i.e both left-invariant and right-invariant)
 - (b) For $a \in G$, let $AD_a : G \to G$ be defined by $AD_a(b) := aba^{-1}$, and let $Ad_a : T_eG \to T_eG$ be defined by $Ad_a := d(AD_a)_e$. Verify that $Ad : G \to GL(\mathcal{G})$ is a homomorphism. It is called the *adjoint representation* of G on G.
 - (c) Prove: if G has a bi-invariant measure, then G has a bi-invariant metric. Hint: Let h(e) be any metric on T_eG . Average $(Ad_a)^*(h(e))$ over the group G to get an Ad-invariant metric g(e) on T_eG . Now extend g(e) to a left-invariant metric g on G and verify that g is bi-invariant.

Remark: Every compact Lie group has a bi-invariant measure (called *H* aar measure, see Lee, p. 46, problem 3–11) and hence a bi-invariant metric.