Exercise Sheet 2

1. (a) Prove that a Möbious transformation $T: \mathbb{C} \cup\{\infty\} \rightarrow \mathbb{C} \cup\{\infty\}$

$$
T(z):=\frac{a z+b}{c z+d}, \quad a, b, c, d \in \mathbb{C} \text { and } a d-b c=1
$$

preserves generalized lines (i.e circles and lines).
(b) Determine the group of fractional linear transformations that preserves the unit disk B^{2}.
(c) Let $\mathbb{H}^{2}=\left(B^{2}, \frac{4 \delta}{\left(1-|z|^{2}\right)^{2}}\right)$ be the Poincare disk model of the hyperbolic plane. Prove : the geodesics are precisely the arcs of circles and line segment in B^{2}, that are perpendicular to ∂B^{2}.
Hint: you may use the results of ex. 1 of Supplementary Exercises and ex. 2 of Exercise Sheet 1.
2. Let $\gamma(t), t \in \mathbb{R}$ be a geodesic in \mathbb{H}^{2}, parametrized by arclength. For each $t \in \mathbb{R}$ let β^{t} be the geodesic in \mathbb{H}^{2} that is perpendicular to γ at the point $\gamma(t)$. As t varies, the geodesic of β^{t} sweep out all of \mathbb{H}^{2}.
Now parametrized β^{t} by arclength, so that $\beta^{t}(s)$ has distance s to γ. Fix s and consider the moving point $t \rightarrow \alpha(t):=\beta^{t}(s), t \in \mathbb{R}$.

Show
(a) $\alpha(t)$ maintains a constant distance s to γ, but $\alpha(t)$ is not a geodesic;
(b) $\alpha(\dot{t})$ is orthogonal to β^{t};
(c) Compute the speed of $\alpha(t)$ as a function of s.
3. Let S^{3} be the unit quaternions. Recall the left invariant vectorfields I, J, K on S^{3} defined by

$$
I(u):=u i, \quad J(u):=u j, \quad K(u):=u k, \quad u \in S^{3}
$$

For $\lambda>0$ we define a Riemannian metric on S^{3} by requiring that I, J, K be orthogonal for g_{λ} and

$$
g_{\lambda}(I, I)=\lambda^{2}, \quad g_{\lambda}(J, J)=g_{\lambda}(K, K)=1
$$

(a) Verify that g_{λ} is left-invariant.
(b) Verify that g_{1} is bi-invariant and is the standard metric on S^{3}.
4. We consider two degenerate situations.
(a) Describe geometric how g_{λ} looks as λ go to 0 . Hint: Use the Hopf fibration $S^{3} \rightarrow S^{2}$.
(b) What happens as λ go to ∞ ? Obviously the distance function

$$
d_{\lambda}(x, y)=\operatorname{dist}_{g_{\lambda}}(x, y)
$$

is increasing in λ but the limit is not given by a Riemannian metric. Prove:

$$
d_{\infty}(x, y):=\lim _{\lambda \rightarrow \infty} \operatorname{dist}_{g_{\lambda}}(x, y)
$$

exists and defines a metric (in the sense of metric spaces).
Hint: Show that any two point $x, y \in S^{3}$ can be connected by a path that is tangent to the 2-plane field spanned by $J(z), K(z)$ at each point $z \in S^{3}$.

