D-MATH, FS 2015

Exercise Sheet 2

1. (a) Prove that a Möbious transformation $T: \mathbb{C} \cup \{\infty\} \to \mathbb{C} \cup \{\infty\}$

$$T(z):=\frac{az+b}{cz+d},\quad a,b,c,d\in\mathbb{C} \text{ and } ad-bc=1$$

preserves generalized lines (i.e circles and lines).

- (b) Determine the group of fractional linear transformations that preserves the unit disk B^2 .
- (c) Let $\mathbb{H}^2 = \left(B^2, \frac{4\delta}{(1-|z|^2)^2}\right)$ be the Poincare disk model of the hyperbolic plane. Prove: the geodesics are precisely the arcs of circles and line segment in B^2 , that are perpendicular to ∂B^2 .

Hint: you may use the results of ex. 1 of Supplementary Exercises and ex. 2 of Exercise Sheet 1.

2. Let $\gamma(t), t \in \mathbb{R}$ be a geodesic in \mathbb{H}^2 , parametrized by arclength. For each $t \in \mathbb{R}$ let β^t be the geodesic in \mathbb{H}^2 that is perpendicular to γ at the point $\gamma(t)$. As t varies, the geodesic of β^t sweep out all of \mathbb{H}^2 .

Now parametrized $\hat{\beta}^t$ by arclength, so that $\beta^t(s)$ has distance s to γ . Fix s and consider the moving point $t \to \alpha(t) := \beta^t(s), t \in \mathbb{R}$.

Show

- (a) $\alpha(t)$ maintains a constant distance s to γ , but $\alpha(t)$ is not a geodesic;
- (b) $\alpha(t)$ is orthogonal to β^t ;
- (c) Compute the speed of $\alpha(t)$ as a function of s.
- **3.** Let S^3 be the unit quaternions. Recall the left invariant vector fields I, J, K on S^3 defined by

$$I(u) := ui, \quad J(u) := uj, \quad K(u) := uk, \quad u \in S^3$$

For $\lambda > 0$ we define a Riemannian metric on S^3 by requiring that I, J, K be orthogonal for g_{λ} and

$$g_{\lambda}(I, I) = \lambda^2$$
, $g_{\lambda}(J, J) = g_{\lambda}(K, K) = 1$.

- (a) Verify that g_{λ} is left-invariant.
- (b) Verify that g_1 is bi-invariant and is the standard metric on S^3 .
- 4. We consider two degenerate situations.
 - (a) Describe geometric how g_{λ} looks as λ go to 0. Hint: Use the Hopf fibration $S^3 \to S^2$.
 - (b) What happens as λ go to ∞ ? Obviously the distance function

$$d_{\lambda}(x,y) = \operatorname{dist}_{g_{\lambda}}(x,y)$$

is increasing in λ but the limit is not given by a Riemannian metric. Prove:

$$d_{\infty}(x,y) := \lim_{\lambda \to \infty} \operatorname{dist}_{g_{\lambda}}(x,y)$$

exists and defines a metric (in the sense of metric spaces).

Hint: Show that any two point $x, y \in S^3$ can be connected by a path that is tangent to the 2-plane field spanned by J(z), K(z) at each point $z \in S^3$.