Exercise Sheet 4

1. Define the oriented 2-plane bundle E_{k} over S^{2} by gluing $B_{1} \times \mathbb{R}^{2}$ to $B_{1} \times \mathbb{R}^{2}$ via the map

$$
\begin{array}{rll}
\phi_{k}: & \partial B_{1} \times \mathbb{R}^{2} & \rightarrow \partial B_{1} \times \mathbb{R}^{2} \\
& \left(e^{i \theta},(x, y)\right) & \mapsto\left(e^{-i \theta}, R_{-k \theta}(x, y)\right)
\end{array}
$$

where $R_{-k \theta}$ is rotation by $-k \theta$, and endowing the result with the obvious orientation (this definition is the same with correct signs). The tautological bundle over $\mathbb{C} P^{N}$ is a complex line bundle defined by associating to each point $L \in \mathbb{C} P^{N}$ the complex line $L \subseteq \mathbb{C}^{N+1}$, i.e. the total space is

$$
F_{N}:=\bigcup_{L \in \mathbb{C} P^{N}}\{L\} \times L
$$

with an appropriate smooth structure. F_{1} may be viewed as a real 2-plane bundle over $\mathbb{C} P^{1} \cong S^{2}$. What is its twisting number?
2. We have previously seen that Lie derivatives $L_{X} Y$ can be used to define "derivatives of vector fields".
(a) Show that the map $L: T M \times T M \rightarrow T M$ is not a connection.
(b) Show that there are vector fields X, Y on \mathbb{R}^{2} such that Y is constant along the x^{1} axis, X is $\frac{\partial}{\partial x^{1}}$ along the x^{1}-axis, yet $L_{X} Y$ does not vanish along the x^{1}-axis. (This shows that Lie differentiation does not give a reasonable way to take directional derivatives of vector fields along curves.)
3. Let $E \rightarrow M$ be a vector bundle with an inner product h on it and a connection D^{E} compatible with h. Let $F \subseteq E$ be a subbundle and let $\pi_{F}: E \rightarrow F$ be the orthogonal projection, i.e. $\pi_{F}(x): E_{x} \rightarrow F_{x}$ is orthogonal projection for each $x \in M$. Let $X \in C^{\infty}(T M), V \in C^{\infty}(F)$. Define

$$
D_{X}^{F} V:=\pi_{F}\left(D_{X}^{E} V\right)
$$

Show that D^{F} is a connection on F and that D^{F} is compatible with the metric on F induced by restricting h to F.
4. Let D be a connection on a vector bundle E that is compatible with the inner product $\langle\cdot, \cdot\rangle$ on E.
(a) Show: if V is a parallel section of E, then V has constant length.
(b) Let e_{1}, \cdots, e_{d} be an orthonormal frame for E over U. Write

$$
D=D_{1}^{0}+\Delta
$$

where D^{0} is the frame connection and $\Delta=\Delta(X, V)=: \Delta_{X} Y$. Show that

$$
\Delta_{X}: E \rightarrow E
$$

is antisymmertic with respect to $\langle\cdot, \cdot\rangle$, i.e.

$$
\left\langle\Delta_{X} V, W\right\rangle+\left\langle V, \Delta_{X} W\right\rangle=0
$$

In components, this reads $\left(\Delta_{X}\right)_{\alpha}^{\beta}+\left(\Delta_{X}\right)_{\beta}^{\alpha}=0$.

