D-MATH, FS 2015

Exercise Sheet 5

- 1. Let D^1, D^2 be two connections on a vector bundle E.
 - (a) Show

$$\Delta(X,V) := D_X^2 V - D_X^1 V$$

defines a bilinear map

$$\Delta(p) \colon T_p M \times E_p \to E_p$$

at each point $p \in M$. (That is, $\Delta(X,Y)(p)$ depends only on X(p) and V(p) and not on derivatives of X or V at p.) Note that Δ defines a section of the bundle Bilin (TM, E; E).

(b) Show for any connection D^1 on E and any smooth family of bilinear maps $\Delta(p): T_pM \times E_p \to E_p$, the expression

$$D_X^2 V := D_X^1 V + \Delta(X, V)$$

defines a connection on E.

- (c) Conclude that the space of (smooth) connections on E is an affine space over the vectorspace C^{∞} (Bilin (TM, E; E)).
- **2.** Let E be a trivial line bundle over M. Let $\langle -, \rangle_E$ be an inner product on the fibers of E. Suppose D is a connection on E that is compatible with $\langle -, \rangle_E$. Prove that there exists a parallel section for D.
- 3. Consider the upper half-plane

$$\mathbb{R}^2_+ := \{ (x, y) \in \mathbb{R}^2 \, | \, y > 0 \}$$

equipped with the hyperbolic metric

$$g_{ij} := \frac{\delta_{ij}}{u^2}.$$

(a) Show that the Christoffel symbols of the Riemannian connection of g are

$$\Gamma^1_{11} = \Gamma^2_{12} = \Gamma^1_{22} = 0, \quad \Gamma^2_{11} = \frac{1}{y}, \quad \Gamma^1_{12} = \Gamma^2_{22} = -\frac{1}{y}.$$

- (b) Let $Y_0 := (1,0)$ be a tangent vector at the point $(0,1) \in \mathbb{R}^2_+$. Let Y(t) be the parallel transport of Y_0 along the curve $\gamma \colon t \mapsto (t,1)$. Show that Y(t) forms an angle -t with γ . Draw it
- (c) Conclude heuristically that a traveler moving along γ is turning to the left.

- **4.** Let E be a complex line bundle over $M = \mathbb{R}^2$ equipped with an i-invariant inner product $\langle \cdot, \cdot \rangle$, i.e. $\langle iX, iY \rangle = \langle X, Y \rangle$ for all X, Y, and let D be a connection compatible with $\langle \cdot, \cdot \rangle$.
 - (a) Show that as a real 2-plane bundle, E possesses a global orthonormal frame e_1, e_2 satisfying $e_2 = ie_1$. (Recall that any vector bundle over a contractible space is trivial.)
 - (b) Show that D has the form

$$D = D^0 - i\omega,$$

where ω is a section of $C^{\infty}(T^*M)$ (a 1-form), $i: E_p \to E_p$ is multiplication by the complex unit, and D^0 is the connection induced by the frame e_1, e_2 . Conversely, any operator D of this form is a connection on E compatible with $\langle \cdot, \cdot \rangle$. (The –sign is only an useful convention.)

(c) Show that D is also compatible with i, that is

$$D_X(iV) = iD_X V$$

for all $X \in C^{\infty}(TM), V \in C^{\infty}(E)$.

- (d) Let V be a section of the form $V = e^{i\theta}e_1$, $\theta \in C^{\infty}(\mathbb{R}^2)$. Show: V is parallel if and only if $d\theta = \omega$.
- (e) Write the 1-form ω as

$$\omega = a(x, y) dx + b(x, y) dy$$
 on $M = \mathbb{R}^2$,

 $a, b \in C^{\infty}(M)$. Show that E possesses a parallel section if and only if

$$\frac{\partial b}{\partial x} - \frac{\partial a}{\partial y} = 0.$$

Since a and b can be specified arbitrarily, it is not very likely that a random chosen connection D has a parallel section.

5. Let (M,g) be a Riemannian manifold and let (N,h) be an isometrically embedded submanifold. Show that the Levi-Civita connection of (N,h) is obtained from the Levi-Civita connection of (M,g) by orthogonal projection.