Exercise Sheet 9

1. (Length-Minimization) Here is an alternate procedure for constructing minimizing geodesics in a complete Riemannian manifold M.

A curve $\gamma:[a, b] \rightarrow M$ is called piecewise smooth if it is continuous and there is a partition $a=t_{0}<t_{1}<\cdots<t_{k}=b$ such that $\gamma \mid\left[t_{i}, t_{i+1}\right]$ is smooth. Fix $p, q \in M$ and let \mathcal{C} be the set of all piecewise-smooth curves connecting p and q.
(a) A sequence $\left(\gamma_{i}\right)_{i \geqslant 1}$ in \mathcal{C} such that $L\left(\gamma_{i}\right) \rightarrow \mathrm{d}(p, q)$ is called a minimizing sequence. Show there is $r>0, k<\infty$, and a minimizing sequence $\left(\gamma_{i}\right)_{i \geqslant 1}$ such that each γ_{i} is a broken geodesic with at most k breaks and lies in $B_{r}(p)$.
(b) Show that a subsequence of $\left(\gamma_{i}\right)_{i \geqslant 1}$ converges to a length-minimizing broken geodesic γ in \mathcal{C}.
(c) Show that γ is smooth. Thus, γ is a minimizing geodesic connecting p and q.
2. (Rays) Let M be a complete, non-compact Riemannian manifold. A half-infinite geodesic $\gamma:[0, \infty) \rightarrow M$ is called a ray if it is length-minimizing (i.e. each finite segment is length-minimizing).

Show that for each $p \in M$ there is a ray emanating from p.
3. (Two-Manifolds with a Killing Field) Let M be a complete, connected, orientable Riemannian 2-manifold. Suppose M has a non-trivial Killing field X with at least one zero, say $X(p)=0$. Prove that M is diffeomorphic to \mathbb{R}^{2} or S^{2}.

The basic idea is to show that geodesic polar coordinates at p cover all of M except possibly one point. The implementation is a bit tricky.
(a) Write $D_{r}:=B_{r}^{T_{p} M}(0)$. If $\exp _{p} \mid D_{r}$ is a diffeomorphism, show that X is given in geodesic coordinates $z=x+i y$ on the image of D_{r} by

$$
X(z)=a i z, \quad|z|<r
$$

for some $a \in \mathbb{R}$.
(b) Show that $\gamma:=\exp _{p}\left(\partial D_{r}\right)$ is either a single point, or a smooth, embedded curve. In the latter case, $\exp _{p} \mid D_{s}$ is a diffeomorphism for some $s>r$. Hint: Examine the value of $|X|$ on γ. Recall that M is orientable. What might go wrong otherwise?
(c) Complete the proof.
4. (Holonomy in Surfaces of Revolution)
(a) Find the holonomy around a latitude circle γ in a surface of revolution. Hint: Let C be the cone tangent to the surface M along γ. Compare the holonomy around γ in C with that in M.
(b) Apply this to show that for a circle in S^{2}, we again have $\vartheta=A$, where A is the enclosed area (cf. Sheet 6, Exercise 1 and Sheet 8 Exercise 4).

