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Solution of Exercise sheet 10

1. The idea of the proof comes from a paper The Existence of Complete Riemannian
Metrics, due by Katsumi Nomizu and Hideki Ozeki.

(a) Let pM, gq be a Riemannian metric. For any p PM we define rppq as the supremum
of the positive numbers such that the closure of Brppqppq is compact. Note the
that if rppq “ 8 for some p, then M is already complete by Hopf-Rinov theorem.
So we can assume that rppq ă 8.
The proof goes as follows

(i) From the triangle inequality we get

|rppq ´ rpqq| ă dpp, qq

This implies that for any sequence pi converging to p

lim
iÑ8

|rppiq ´ rppq| ă lim
iÑ8

dppi, pq “ 0

and hence that the function r : M Ñ R is a positive continuous function.

(ii) A partition of unity argument show that there exist a smooth function
w : M Ñ R such that wpxq ą 1

rppq for any p PM .

(iii) We define g1 :“ w2g. Since w is positive it is easy show that it is again a
metric on M .

(iv) We denote with B1sppq be a ball of radius s and center p in M with respect to
the metric induces by g1 and we denote with d1 the distance function induces
by g1. We prove that B11

3

ppq Ă Brppq{2ppq. Let p, q be two points on M such

that dpp, qq ě rppq{2. Let γ be a path connecting p with q parametrized by
arc-length. Let Lpγq be the length of γ with respect to d and let L1pγq be
the length of γ with respect to d1. Then

L1pγq “

ż b

a
wpγptqq

´

x 9γptq, 9γptqyg

¯1{2
dt

“ wpγpt0qqpb´ aq “ wpγpt0qqLpγq

for any t0 P ra, bs (here the second equality is just the mean values theorem
for the integration). Now since

|rpγpt0qq ´ rppq| ă dpγpt0q, pq ď Lpγq

we get rpγpt0qq ă rppq ` Lpγq. Then we conclude

L1pγq ą Lpγq{prppq ` Lpγqq.
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Since Lpγq ě rppq{2 we get L1pγq ą 1{3 and so d1pp, qq ą 1{3 as γ was
arbitrary. Then we have proven

M{Brppq{2ppq ĂM{B11
3

ppq

which implies

B11
3

ppq Ă Brppq{2ppq.

(v) With this, we can easily prove that pM, g1q is complete. Namely, take ppkqk
a Cauchy sequence for d1. Then there is N P N such that for every i ě N ,
we have

d1ppN , piq ă
1

3

Hence, pi P B
1
1
3
ppN q Ă BrppN q{2ppN q which is a compact set by definition

of rppN q. Hence there is a subsequence of ppkqk that converges, and so the
Cauchy sequence converges. Therefore, pM, g1q is complete.

(b) By above we can assume that pM, gq is a complete Riemannian manifold. Fix
p PM . Then the function dpp,´q : M Ñ R is a continuous function.

(i) A partition of unity argument show that there exist a smooth function wpqq
such that wpqq ą dpp, qq.

(ii) Define g1 :“ e´2wg. Let γ be a length minimizing path between p and q
with respect to g parametrize by arc length then dpp, γptqq “ t and

|| 9γptq||g1 “ e´wpγptqq || 9γptq||g “ e´wpγptqq

(iii) The length of γ with respect to g1 is

L1pγq :“

ż L

0
|| 9γptq||g1 “

ż L

0
e´wpγptqq ă

ż L

0
e´t ă 1

then this is bounded.

(c) Come back to the point (ii) a). We need to define a new smooth function w̃ that
doesn’t creates troubles in the proof. More precisely since K is compact there
exists a smooth function w̃ such that

w̃pqq :“

"

1 if q P K
ą 1

rpqq if q R V

where V is some pre-compact open set containing K. Now since any compact
metric space is complete we can use the function w̃ instead of w and obtain the
same result. (You have to do some changes: do you see where? ;) ). Analogously
for the case b).

2. (a) one vertex, four edges.

(b) The point is that the gluing preserves the metric if and only if the sum of the
angles Sr is equal to 2π. Now as r goes to one Sr converges to zero. On the other
hand as r goes to zero Sr converges to 6π (Fix r and increase the radius of the
disk indefinitely: you get that the arcs becomes segments and end up with the

2



Euclidean octagon). In particular since the sum is given by a smooth function
depending on r we conclude that there exists an r1 such that this gluing is possible.

(c) Its Euler characteristic is 1 ´ 4 ` 1 “ ´2 thus we get a genus 2 Riemannian
surfaces.

This process can be extend for genus g ě 2 Riemannian surfaces as follows: replacing
eight arcs in this construction by 4g arcs, then denote the sums of this angles by Sgr .
The above strategy remains true and it turns out that Sgr goes to zero as r goes to 1,
whereas Sgr go to p4g ´ 2qπ{2. Thus the gluing is possible.
Also you can see that if g “ 1 then the sum of the angles is always smaller than 2π,
i.e this method does not give you a hyperbolic torus.

3. (a) See b).

(b) The fact that it is a cone this is already prove in the class. To prove that this is
again a smooth manifold we use the following strategy. We can consider V “ Rq,
and W “ Rp, then C is given as the zero set of a family of polynomials. Then
C is defined to be the zero set of r ě 0 functions f1, . . . fr. Consider the map
f “ pf1, . . . , frq, this is a smooth function

f : Rp`q Ñ Rr

and C “ f´1p0, . . . 0q. It is easy see that the only critical point of the map is
precisely the corner of the cone. Then if we remove this point we get that C is a
submanifold.

4. (a) Let p P M . Assume that there are two isometries σp, σ
1
p that fix p and reverse

each geodesics trough p. In particular the differential of the two maps at p is the
same. Therefore the two isometries are the same by ExSheet 7.

(b) By what we prove in c), we know that M is complete. Take p PM and r ą 0 such
that Brppq is geodesically convex. Then choose w P Br{3ppq and q PM . Then by
Hopf-Rinow, there is η P TpM such that expppηq “ q and there is ν P TpM such
that expppνq “ w. We want to get an explicit expression for σwpqq in terms of
smooth functions. Namely, as σr is an isometry, we have

σrpqq “ σrpexpppνqq “ expσrppqpdσrppqνq.

Now, σr is the ’reflection’ in r, so therefore σrppq “ exppp2νq by geodesic convexity.
Furthermore, as σr is an isometry, it preserves parallel transport in the following
sense:
If X is a parallel vector field along γ, then pσrq˚X is a parallel vector field along
σr ˝ γ.
In our case, we can look at the parallel vector field X running along γ defined
by t ÞÑ exppptνq such that Xp0q “ η. Under σr, we map γ to γ1 defined by
t ÞÑ expppp2´ tqνq and X is mapped to the parallel vector field X 1 along γ1 which
has X 1p1q “ ´Xp1q P TrM . Therefore

dσrppqν “ X 1p0q “ ´Pγpηqp2q.
(Here P stands for parallel transport. Draw a figure, if this formula doesn’t seems
clear to you after the above discussion. You could also simply look at the case of
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Rn to clarify this massaging of formulae.) In total, we get

σrpqq “ expσrppqpdσrppqνq “ expexppp2νq
p´PtÑexppptνq

pηqp2qq.

Thus smoothness of σ : MˆM ÑM follows from smooth dependence of solutions
of ODE’s on initial conditions.

(c) Let γ : pa, bq Ñ M be a geodesic. Choose a`b
2 ă t0 ă b, put p :“ γpt0q. Then

γ1 :“ σppγpt0´pt´ t0qqq extend γ beyond b. Then by Hopf-Rinow M is complete.

(d) Note that

τγ,´ : RÑ IsompMq

is well defined since τγ,t is the composition of isometries. On the other hand it is
easy see

τγ,sγptq “ σγps{2qσγp0qpγptqq “ σγps{2qγp´tq “ γps` tq.

and so τγ,s ˝ τγ,tpγp0qq “ τγ,s`tpγp0qq. Furthermore, if X is a parallel vector
field along γ, then under σγ0 it gets mapped to the parallel vector field X 1 along
γ1 : t ÞÑ γp´tq having initial condition X 1p0q “ ´Xp0q i.e.X 1ptq “ ´Xp´tq. Then
applying σγps{2q to X 1, we get a parallel vector field along γ2 : t ÞÑ γps ` tq such

that X2p´s{2q “ ´X 1p´s{2q “ Xps{2q, i.e. X2ptq “ Xpt` sq. Thus

dτγ,spγp0qqXp0q “ Xpsq

and thus

d pτγ,t`sqγp0q “ d pτγ,s ˝ τγ,tqγp0q .

Hence the two isometries are the same, i.e

τγ,t`s “ τγ,s ˝ τγ,t.

by ExSheet 7.

Remark. By Hopf-Rinow there exists a minimizing geodesic γ : ra, bs Ñ M
between any two pair p, q PM . Let p1 :“ γp b´a2 q. Then

σp1ppq “ σp1pγp0qq “ q

and so IsompMq acts transitively on M .

5.

Remark (A different viewpoint for Symmetric Spaces). We suggest to have a look
of the following lecture: www.math.uni-augsburg.de/ eschenbu/symspace.pdf. They
contain a lot of nice examples and proofs!

Below we summarize the consequences of exercise 4. We define a symmetric as a
Riemannian manifold M equipped with a map σ : M ˆM Ñ M such that σpp´q P
IsompMq and

σpppq “ p, dpσpqp “ ´id

Now by point c) and d) we know that this implies thatM is complete and homogeneous.
Now fix a point p PM and define

Kp :“ tg P IsompMq : gp “ pu
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the isotropy group at p. It turns out that the differential of any g P Kp at p is an
orthogonal transformation of TpM but since any isometry f is completely determined
by fppq and dfp we conclude that there is an inclusion as a closed subgroup

θ : Kp Ñ OpTpMq

defined by θpgq :“ dgp. This in particular implies that Kp is compact. On the other
hand assume that M 1 is a homogeneous Riemannian manifold equipped with an isom-
etry σpp´q P IsompM

1q such that

σpppq “ p, dpσpqp “ ´id p˚q

Then we define σq :“ g´1σpg where g P IsompM 1q, gppq “ q. Thus we conclude that
a symmetric spaces can be defined as follows: A symmetric spaces is a homogeneous
Riemannian manifold M equipped with an isometry σp at some point p PM that satisfy
(*).
Moreover using some basic knowledge of algebra I (group action on a set) we may
identify M as the set IsompMq{Kp, i.e there is a bijection IsomM{Kp ÑM given by

gKp Ñ gp

In particular it is possible to prove that IsompMq(see for instance Helgason’book:
Differential Geometry, Lie Groups, and Symmetric Spaces) has a smooth structure,
that the above map is a diffeomorphism and that

dimpMq “ dimpIsompMqq ´ dimpKpq.

All of this data put together tells us that we can visualize a symmetric space as a
quotient of groups.

(a) Consider the hyperbolic space with the Hyperboloid model

Hn :“
 

x P Rn`1 : xx, xyL “ ´1
(

where the metric (called Lorentzian metric) is given by

xx, yyL :“

˜

n
ÿ

i“1

xiyi

¸

´ xn`1yn`1

In particular pHn, x´,´yLq is Riemannian manifold isometric to the Poincare n-
disk model (check that by yourself ;) !). In this case the isometry is given by the
”Lorentzian reflection” defined by

σxpyq :“ ´y ` 2 xy, xyL x

(b) The set S` of symmetric real positive definite n-matrices can be visualized as an
open subset of the vector space of symmetric real n-matrices. In particular the
tangential spaces TPS` is isomorphic to the set of symmetric real n-matrices.
The metric on S` can be written via

xA,ByP :“ tr
`

AP´1BP´1
˘

We define a smooth group action GLpn,Rq Ñ S` via gpP q :“ gPgT . In particular
it is easy see

dgP pAq “ gAgT
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for any A P S`. A simple calculation show that each g defines an isometry on
pS`, x´,´yq. Moreover the action is transitive: from linear algebra any symmetric
real positive definite n-matrix can be written as ggT for some g P GLpn,Rq, i.e
for any P P S`, P “ ggT “ gpIdq. Consider the smooth map σId : S` Ñ S`
defined by σIdpP q :“ P´1, note

σIdpIdq “ Id, dpσIdqPA “ ´P
´1AP´1

for A P TPS`. A straightforward calculation show that σid is an isometry. More-
over since dpσIdqIdA “ ´A we conclude that pS`, x´,´yq is a symmetric spaces.

(c) We don’t have an answer (yet). ;) Helpful suggestions are welcome :)
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