Solutions of Exercise sheet 11

1. This was proven in the class or alternatively follows from unbundling definitions in local charts.
2. (a) Recall from exercise sheet 7 that for left invariant vectorfields X, Y we have

$$
\begin{equation*}
D_{X} Y=\frac{1}{2}[X, Y] \tag{*}
\end{equation*}
$$

Moreover from differential geometry I we know that Lie bracket preserves leftinvariant vectorfields.

$$
\begin{aligned}
R(X, Y) Z & =-\frac{1}{4}[X,[Y, Z]]+\frac{1}{4}[Y,[X, Z]]+\frac{1}{2}[[X, Y], Z] \\
& =\frac{1}{4}[[X, Y], Z]
\end{aligned}
$$

where the last equality uses the Jacobi identity of the Lie bracket. For the second equality we use the property of the Levi-Civita connection. We have

$$
\operatorname{Rm}(X, Y, X, Y)=\left\langle\frac{1}{4}[[X, Y] X], Y\right\rangle
$$

On the other hand we have

$$
\begin{aligned}
\operatorname{Rm}(X, Y, X, Y) & =\left\langle-D_{X} D_{Y} X, Y\right\rangle+\left\langle D_{Y} D_{X} X, Y\right\rangle+\left\langle D_{[X, Y]} X, Y\right\rangle \\
& =-Y\left\langle D_{Y} X, Y\right\rangle+\left\|D_{Y} X\right\|^{2} \\
& +Y\left\langle D_{X} X, Y\right\rangle-\left\langle D_{X} X, D_{Y} Y\right\rangle \\
& +[X, Y]\langle X, Y\rangle-\left\langle\frac{1}{2}[[X, Y], Y], Y\right\rangle
\end{aligned}
$$

Since the metric is bi invariant we have $Z\langle X, Y\rangle=0$ for any left-invariant vector fields X, Y, then by $\left({ }^{*}\right)$ the above expression reduces to

$$
\left\|D_{Y} X\right\|^{2}+\left\langle\frac{1}{2}[[X, Y], Y], Y\right\rangle
$$

But the second terms is equal to $-2 \operatorname{Rm}(X, Y, Y, Y)$ and hence is zero.
(b) Let G be a Lie group and let $V, W \in P \subset T_{g} G$, then consider the two vectors $d L_{g^{-1}} V, d L_{g^{-1}} W \in T_{i d} G$. In particular the two left invariant vector fields $V(-), W(-)$ satisfy $V(g)=V$ and $W(g)=W$.

Now by exercise sheet 1 we know that S^{3} has a bi-invariant metric (the one induced by the inclusion in \mathbb{R}^{4}). Let V, W be an orthonormal basis of $P \subset T_{p} S^{3}$, let $V(-), W(-)$ the two left invariant vector fields satisfy $V(g)=V$ and $W(g)=W$. Write $V(i d)=a i+b j+c k, W(i d)=d i+e j+f k$. Now since the metric is bi
invariant we get that $V(i d) W(i d)$ are again an orthonormal pair of vectors on $T_{i d} S^{3}$

$$
\begin{aligned}
\operatorname{Rm}(V, W, V, W) & =\frac{1}{4}\|[V(i d), W(i d)]\|^{2} \\
& =\frac{1}{4}\left\|2\left(b_{1} c_{1}-c_{1} b_{2}\right) i+2\left(a_{1} c_{2}-c_{1} a_{2}\right) j+2\left(a_{1} b_{2}-b_{1} a_{2}\right) k\right\|^{2}
\end{aligned}
$$

where the last equality come from the explicit computation via the Lie bracket of S^{3}. Note that the results of the computation can be viewed as a cross product between $V(i d)$ and $W(i d)$, but since they are orthonormal we conclude

$$
\operatorname{Rm}(V, W, V, W)=1
$$

(c) It follows from point a).
3. We do the proof in several steps.
(a) We use the geodesic normal coordinates x^{1}, x^{2} near p on $B_{R}(p)$, i.e p is sent to 0 and let $e_{1}=\frac{\partial}{\partial x^{1}}, e_{2}=\frac{\partial}{\partial x^{2}}$ be the local frame near p. Now with respect to these coordinates we have that the metric g satisfies

$$
g_{i j}(0)=\delta_{i j}, \quad \frac{\partial}{\partial x^{k}} g_{i j}(0)=0, \text { for } i, j, k=1,2 \quad \Gamma_{i j}^{k}(0)=0
$$

this means that for any $z \in B_{R}(p)$

$$
g_{i j}(z)=\delta_{i j}+O\left(|z|^{2}\right)
$$

Therefore

$$
K(p)=\operatorname{Rm}\left(e_{1}, e_{2}, e_{1}, e_{2}\right)=R_{1212}(0)=R_{121}^{2}(0)
$$

(b) Using the above exercise 1, we have in geodesic normal coordinates

$$
R_{121}^{2}=-\frac{\partial}{\partial x^{2}} \Gamma_{11}^{2}+\frac{\partial}{\partial x^{1}} \Gamma_{21}^{2}
$$

Since the Chrystoffel symbols are given by

$$
\Gamma_{i j}^{m}=\frac{1}{2} g^{m k}\left(\partial_{i} g_{j k}+\partial_{j} g_{i k}-\partial_{k} g_{i j}\right)
$$

Thus a formal explicit computations (at 0) give us that

$$
K(p)=-\frac{\partial}{\partial x^{2}} \Gamma_{11}^{2}+\frac{\partial}{\partial x^{1}} \Gamma_{21}^{2}=\frac{1}{2}\left(g_{22,11}(0)+g_{11,22}(0)-2 g_{12,12}(0)\right)
$$

where $g_{i j, l k}$ means $\frac{\partial^{2}}{\partial x^{k} \partial x^{l}} g_{i j}$.
(c) On the other hand if we expand $g_{i j}$ near 0 we get

$$
g_{i j}(x)=\delta_{i j}+\frac{1}{2} g_{i j, 11}\left(x_{1}\right)^{2}+g_{i j, 12} x_{1} x_{2}+\frac{1}{2} g_{i j, 22}\left(x_{2}\right)^{2}+O\left(|x|^{3}\right)
$$

Now fix an $r<R$, then

$$
A(r):=\int_{|x|<r}\left(\operatorname{det}\left(g_{i j}(x)\right)\right)^{1 / 2} d x^{1} d x^{2}
$$

Thus if we insert the above expansion a straightforward calculation (expand also the square root and only keep terms up to order 2) gives

$$
A(r)=\pi r^{2}+\frac{\pi}{4} Z r^{4}+O\left(r^{5}\right)
$$

where $Z=-\frac{1}{4}\left(g_{11,11}(0)+g_{11,22}(0)+g_{22,11}(0)+g_{22,22}(0)\right)$.
(d) Now we want to show that $K(p)=\lambda Z$ for some number λ. Let $X=\left(X^{1}, X^{2}\right)$ be a tangent vector at 0 . Denote with X the constant vectorfield $X(x):=X^{i} e^{i}$. Recall that near 0 the path

$$
\gamma(t):=\left(t X^{1}, t X^{2}\right)
$$

is a geodesic. Note also that $\dot{\gamma}(t)=X$. Then we get
$0=D_{\gamma} \gamma=\frac{\partial^{2}}{\partial t^{2}} \gamma^{k}+\dot{\gamma}^{i}(t) \dot{\gamma}^{j}(t) \Gamma_{i j}^{k}(\gamma(t))=\dot{\gamma}^{i}(t) \dot{\gamma}^{j}(t) \Gamma_{i j}^{k}(\gamma(t))=X^{i} X^{j} \Gamma_{i j}^{k}(\gamma(t))$
Now if we differentiate the above equation at $t=0$ we get a relation between the first derivative of the Chrystoffel's symbols. More precisely they are

$$
g_{11,11}(0)=0=g_{22,22}(0), \quad g_{11,22}(0)=g_{22,11}(0)=-2 g_{12,12}(0)
$$

If we insert these relation in $K(p)$ and in Z we get

$$
K(p)=\frac{3}{2} g_{11,22}(0), \quad Z=-\frac{1}{2} g_{11,22}(0)
$$

(e) We can now write

$$
A(r):=\pi r^{2}-\frac{\pi K(p)}{12} r^{4}+O\left(r^{5}\right)
$$

Now since $A(r)=\int_{0}^{r} C(s) d s$ we get that $C(r)=\frac{d}{d r} A(r)$. This give us the formula for $C(r)$.
4. Fix a $p \in M$. By applying a translation on \mathbb{R}^{3} (isometry), we may assume that $p=0$ and by a rotation (isometry), we may assume further, that the tangent plane $T_{p} M$ equals to $\{z=0\}$. Now look at $\phi: M \rightarrow \mathbb{R}^{2}:(x, y, z) \mapsto(x, y)$ and for $0 \in M$, we have that $d \phi(0,0)$ is an isomorphism. Therefore by inverse function theorem, there is a neighborhood in $B_{r}(0) \subset \mathbb{R}^{2}$ such that $\phi^{-1}: B_{r}(0) \subset \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ is a diffeomorphism onto its image. Hence over $B_{r}(0)$ there is a function $u: B_{r}(0) \rightarrow \mathbb{R}$ such that

$$
f(x, y):=(x, y, u(x, y)) \in M
$$

for all $(x, y) \in B_{r}(0,0)$ and so we established that locally M is a graph over the first two coordinates.
As a consequence, $u(0,0)=0, \partial_{x} u(0,0)=\partial_{y} u(0,0)=0$ and a local frame is given by

$$
\partial_{x} f(x, y)=\left(1,0, u_{x}(x, y)\right), \quad \partial_{y} f(x, y)=\left(0,1, u_{y}(x, y)\right)
$$

With respect to this frame we get

$$
g_{11}=1+\left(\partial_{1} u\right)^{2} \quad g_{12}={\underset{3}{ }}_{\partial_{1} u \partial_{2} u \quad g_{22}=1+\left(\partial_{2} f\right)^{2}, ~}^{2}
$$

and therefore

$$
\begin{array}{ll}
\partial_{1} g_{11}=2 u_{x} u_{x x} & \partial_{2} g_{11}=2 u_{x} u_{x y} \\
\partial_{1} g_{12}=u_{x x} x u_{y}+u_{x} x u_{x y} & \partial_{2} g_{12}=u_{x y} x u_{y}+u_{x} x u_{y y} \\
\partial_{1} g_{22}=2 u_{y} u_{y y} & \partial_{2} g_{22}=2 u_{y} u_{x y}
\end{array}
$$

where $u_{x}=\partial_{1} u$ and $u_{y}=\partial_{2} u$. Therefore, $\Gamma_{i j}^{k}(0,0)=0$. Hence,

$$
K(p)=\frac{1}{2}\left(\partial_{1} \partial_{1} g_{12}(0,0)-\partial_{1} \partial_{1} g_{22}(0,0)\right)=u_{x x}(0,0) u_{y y}(0,0)-u_{x y}^{2}(0,0)
$$

which the determinant of the Hessian of u at $(0,0)$. Since this matrix is diagonalizable, the determinant is equal to the products of the two principal curvatures.
5. (a) Recall form exercise 4 d) of the previous exercise sheet that each geodesic γ on M defines a one parameter subgroup (a group homomorphism) $\tau_{\gamma,(-)}: \mathbb{R} \rightarrow$ $\operatorname{Isom}(M)$, via

$$
\tau_{\gamma, t}=\sigma_{\gamma(t / 2)} \circ \sigma_{\gamma(0)}
$$

Let X be a parallel vector field along γ. We already proved that $\tau_{\gamma, t}$ is the isometry that sends $X(s)$ to $X(t+s)$, but since X is parallel along γ we conclude that $d \tau_{\gamma, t}$ acts as the parallel transport along $\gamma . \tau_{\gamma, t}$ is called transvections along γ. Now let $p \in M V \in T_{p} M$ and let γ be the geodesic with initial velocity V. Now we can consider $\tau_{\gamma, t}$ as the flow of a vector field: let $\phi^{-}: M \times \mathbb{R} \rightarrow M$ defined by

$$
\phi^{t}(q)=\tau_{\gamma, t}(q)
$$

then let X be the vectorfield defined by

$$
X(q)=\frac{\partial}{\partial t} \phi^{t}(q)
$$

then X is a Killing fields with $X(p)=V$. Now let $W \in T_{p} M$, let $\delta(s)$ be a path starting at p with initial velocity W given by $\delta(s)=\exp _{p}(s W)$. We have

$$
\begin{aligned}
D_{W} X(p) & =\left.D_{\dot{\delta}(s)} X(p)\right|_{s=0} \\
& =\left.\frac{D}{d s}\left(\frac{\partial}{\partial t} \phi^{t}(\delta(s))\right)\right|_{t=s=0} \\
& =\left.\frac{D}{d t} \frac{\partial}{\partial s} \phi^{t}(\delta(s))\right|_{s=t=0}
\end{aligned}
$$

where the last equation comes from the torsion free property of D. Since

$$
\left.\frac{\partial}{\partial s}\right|_{s=0} \phi^{t}(\delta(s))=d \tau_{\gamma, t} W
$$

and $d \tau_{\gamma, t}$ acts like the parallel transport along γ we conclude that the above expression is 0 .
(b) Let X, Y, Z be 3 Killing fields with $D X(p)=D Y(p)=D Z(p)=0$, then we have

$$
R(X, Y) Z(p)=[[X, Y], Z](p)
$$

