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1. This was proven in the class or alternatively follows from unbundling definitions in
local charts.

2. (a) Recall from exercise sheet 7 that for left invariant vectorfields X,Y we have

DXY “
1

2
rX,Y s p˚q

Moreover from differential geometry I we know that Lie bracket preserves left-
invariant vectorfields.

RpX,Y qZ “ ´
1

4
rX, rY,Zss `

1

4
rY, rX,Zss `

1

2
rrX,Y s , Zs

“
1

4
rrX,Y s, Zs

where the last equality uses the Jacobi identity of the Lie bracket. For the second
equality we use the property of the Levi-Civita connection. We have

RmpX,Y,X, Y q “

B

1

4
rrX,Y sXs , Y

F

On the other hand we have

RmpX,Y,X, Y q “ x´DXDYX,Y y ` xDYDXX,Y y `
@

DrX,Y sX,Y
D

“ ´Y xDYX,Y y ` ||DYX||
2

` Y xDXX,Y y ´ xDXX,DY Y y

` rX,Y s xX,Y y ´

B

1

2
rrX,Y s , Y s , Y

F

Since the metric is bi invariant we have Z xX,Y y “ 0 for any left-invariant vector
fields X,Y , then by (*) the above expression reduces to

||DYX||
2
`

B

1

2
rrX,Y s , Y s , Y

F

But the second terms is equal to ´2RmpX,Y, Y, Y q and hence is zero.

(b) Let G be a Lie group and let V,W P P Ă TgG, then consider the two vec-
tors dLg´1V, dLg´1W P TidG. In particular the two left invariant vector fields
V p´q,W p´q satisfy V pgq “ V and W pgq “W .

Now by exercise sheet 1 we know that S3 has a bi-invariant metric (the one induced
by the inclusion in R4). Let V,W be an orthonormal basis of P Ă TpS

3, let
V p´q,W p´q the two left invariant vector fields satisfy V pgq “ V and W pgq “W .
Write V pidq “ ai ` bj ` ck, W pidq “ di ` ej ` fk. Now since the metric is bi

1



invariant we get that V pidq W pidq are again an orthonormal pair of vectors on
TidS

3

RmpV,W, V,W q “
1

4
||rV pidq,W pidqs||2

“
1

4
||2 pb1c1 ´ c1b2q i` 2 pa1c2 ´ c1a2q j ` 2 pa1b2 ´ b1a2q k||

2

where the last equality come from the explicit computation via the Lie bracket of
S3. Note that the results of the computation can be viewed as a cross product
between V pidq and W pidq, but since they are orthonormal we conclude

RmpV,W, V,W q “ 1

(c) It follows from point a).

3. We do the proof in several steps.

(a) We use the geodesic normal coordinates x1, x2 near p on BRppq, i.e p is sent to 0
and let e1 “

B
Bx1

, e2 “
B
Bx2

be the local frame near p. Now with respect to these
coordinates we have that the metric g satisfies

gijp0q “ δij ,
B

Bxk
gijp0q “ 0, for i, j, k “ 1, 2 Γkijp0q “ 0

this means that for any z P BRppq

gijpzq “ δij `Op|z|
2
q

Therefore

Kppq “ Rmpe1, e2, e1, e2q “ R1212p0q “ R2
121p0q

(b) Using the above exercise 1, we have in geodesic normal coordinates

R2
121 “ ´

B

Bx2
Γ2
11 `

B

Bx1
Γ2
21

Since the Chrystoffel symbols are given by

Γmij “
1

2
gmk pBigjk ` Bjgik ´ Bkgijq

Thus a formal explicit computations (at 0) give us that

Kppq “ ´
B

Bx2
Γ2
11 `

B

Bx1
Γ2
21 “

1

2
pg22,11p0q ` g11,22p0q ´ 2g12,12p0qq

where gij,lk means B2

BxkBxl
gij .

(c) On the other hand if we expand gij near 0 we get

gijpxq “ δij `
1

2
gij,11px1q

2 ` gij,12x1x2 `
1

2
gij,22px2q

2 `Op|x|3q

Now fix an r ă R, then

Aprq :“

ż

|x|ăr
pdet pgijpxqqq

1{2 dx1dx2

2



Thus if we insert the above expansion a straightforward calculation (expand also
the square root and only keep terms up to order 2) gives

Aprq “ πr2 `
π

4
Zr4 `Opr5q

where Z “ ´1
4 pg11,11p0q ` g11,22p0q ` g22,11p0q ` g22,22p0qq.

(d) Now we want to show that Kppq “ λZ for some number λ. Let X “
`

X1, X2
˘

be a tangent vector at 0. Denote with X the constant vectorfield Xpxq :“ Xiei.
Recall that near 0 the path

γptq :“
`

tX1, tX2
˘

is a geodesic. Note also that 9γptq “ X. Then we get

0 “ Dγγ “
B2

Bt2
γk ` 9γiptq 9γjptqΓkijpγptqq “ 9γiptq 9γjptqΓkijpγptqq “ XiXjΓkijpγptqq

Now if we differentiate the above equation at t “ 0 we get a relation between the
first derivative of the Chrystoffel’s symbols. More precisely they are

g11,11p0q “ 0 “ g22,22p0q, g11,22p0q “ g22,11p0q “ ´2g12,12p0q,

If we insert these relation in Kppq and in Z we get

Kppq “
3

2
g11,22p0q, Z “ ´

1

2
g11,22p0q

(e) We can now write

Aprq :“ πr2 ´
πKppq

12
r4 `Opr5q

Now since Aprq “
şr
0 Cpsqds we get that Cprq “ d

drAprq. This give us the formula
for Cprq.

4. Fix a p P M . By applying a translation on R3 (isometry), we may assume that p “ 0
and by a rotation (isometry), we may assume further, that the tangent plane TpM
equals to tz “ 0u. Now look at φ : M Ñ R2 : px, y, zq ÞÑ px, yq and for 0 P M , we
have that dφp0, 0q is an isomorphism. Therefore by inverse function theorem, there is
a neighborhood in Brp0q Ă R2 such that φ´1 : Brp0q Ă R2 Ñ R3 is a diffeomorphism
onto its image. Hence over Brp0q there is a function u : Brp0q Ñ R such that

fpx, yq :“ px, y, upx, yqq PM

for all px, yq P Brp0, 0q and so we established that locally M is a graph over the first
two coordinates.
As a consequence, up0, 0q “ 0, Bxup0, 0q “ Byup0, 0q “ 0 and a local frame is given by

Bxfpx, yq “ p1, 0, uxpx, yqq , Byfpx, yq “ p0, 1, uypx, yqq

With respect to this frame we get

g11 “ 1` pB1uq
2 g12 “ B1uB2u g22 “ 1` pB2fq

2
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and therefore

B1g11 “ 2uxuxx B2g11 “ 2uxuxy
B1g12 “ uxxxuy ` uxxuxy B2g12 “ uxyxuy ` uxxuyy
B1g22 “ 2uyuyy B2g22 “ 2uyuxy

where ux “ B1u and uy “ B2u. Therefore, Γkijp0, 0q “ 0. Hence,

Kppq “
1

2
pB1B1g12p0, 0q ´ B1B1g22p0, 0qq “ uxxp0, 0quyyp0, 0q ´ u

2
xyp0, 0q

which the determinant of the Hessian of u at p0, 0q. Since this matrix is diagonalizable,
the determinant is equal to the products of the two principal curvatures.

5. (a) Recall form exercise 4 d) of the previous exercise sheet that each geodesic γ on
M defines a one parameter subgroup (a group homomorphism) τγ,p´q : R Ñ

IsompMq, via
τγ,t “ σγpt{2q ˝ σγp0q.

Let X be a parallel vector field along γ. We already proved that τγ,t is the isometry
that sends Xpsq to Xpt`sq, but since X is parallel along γ we conclude that dτγ,t
acts as the parallel transport along γ. τγ,t is called transvections along γ. Now
let p PM V P TpM and let γ be the geodesic with initial velocity V . Now we can
consider τγ,t as the flow of a vector field: let φ´ : M ˆ RÑM defined by

φtpqq “ τγ,tpqq

then let X be the vectorfield defined by

Xpqq “
B

Bt
φtpqq

then X is a Killing fields with Xppq “ V . Now let W P TpM , let δpsq be a path
starting at p with initial velocity W given by δpsq “ expppsW q. We have

DWXppq “ D 9δpsqXppq
ˇ

ˇ

ˇ

s“0

“
D

ds

ˆ

B

Bt
φtpδpsqq

˙
ˇ

ˇ

ˇ

ˇ

t“s“0

“
D

dt

B

Bs
φtpδpsqq

ˇ

ˇ

ˇ

ˇ

s“t“0

where the last equation comes from the torsion free property of D. Since

B

Bs

ˇ

ˇ

ˇ

ˇ

s“0

φtpδpsqq “ dτγ,tW

and dτγ,t acts like the parallel transport along γ we conclude that the above
expression is 0.

(b) Let X,Y, Z be 3 Killing fields with DXppq “ DY ppq “ DZppq “ 0, then we have

RpX,Y qZppq “ rrX,Y s , Zs ppq
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