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Tom Ilmanen

Solutions of Exercise sheet 11

1. This was proven in the class or alternatively follows from unbundling definitions in
local charts.

2. (a) Recall from exercise sheet 7 that for left invariant vectorfields X,Y we have
1
2

Moreover from differential geometry I we know that Lie bracket preserves left-
invariant vectorfields.

DxY = - [X,Y] (%)

R(X,Y)Z = —i[X,[Y,Z]]Jri[Y’[X,Z]]JF

1
= Z[[va]az]

where the last equality uses the Jacobi identity of the Lie bracket. For the second
equality we use the property of the Levi-Civita connection. We have

S11X,1,2]

Rm(X,Y, X,Y) = <i [[X,Y] X] ,Y>

On the other hand we have

Rm(X,Y,X,Y) = (—DxDyX,Y)+{(DyDxX,Y)+ <D[X,Y]X, Y>
= —Y(DyX,Y)+||DyX|]

Y{DxX,Y)—-{(DxX,DyY)

[X,Y](X, V) — <; ([X,Y],Y] ,Y>

Since the metric is bi invariant we have Z (X,Y ) = 0 for any left-invariant vector
fields X, Y, then by (*) the above expression reduces to

1Dy xIE + (SIXYLYLY )

But the second terms is equal to —2Rm(X,Y,Y,Y) and hence is zero.

+
_|_

(b) Let G be a Lie group and let V,W e P < T,G, then consider the two vec-
tors dL,1V,dL,1W € TiyG. In particular the two left invariant vector fields
V (=), W(—) satisty V(g) =V and W(g) = W.

Now by exercise sheet 1 we know that S2 has a bi-invariant metric (the one induced

by the inclusion in R*). Let V,W be an orthonormal basis of P c TpS3, let

V (=), W(—) the two left invariant vector fields satisfy V(g) = V and W (g) = W.

Write V(id) = ai + bj + ck, W(id) = di + ej + fk. Now since the metric is bi
1



invariant we get that V' (id) W (id) are again an orthonormal pair of vectors on
T;aS®
1

Rm(V,W,V.W) = 2 [[[V(id), W (id)]||*

1 ) .
= Z H2 (b161 — Clbg) 1+ 2 (a102 — Clag)j +2 (albg — blag) ]{7H2

where the last equality come from the explicit computation via the Lie bracket of
53. Note that the results of the computation can be viewed as a cross product
between V' (id) and W (id), but since they are orthonormal we conclude

R(V,W,V, W) = 1

(c) It follows from point a).

3. We do the proof in several steps.
(a) We use the geodesic normal coordinates x!, 2 near p on Bg(p), i.e p is sent to 0
and let e; = %1, ey = % be the local frame near p. Now with respect to these

coordinates we have that the metric g satisfies

0 o
9i;(0) = 8, ﬁgﬁ(o) =0, fori,j,k=1,2 Fi?j(o) =0

this means that for any z € Br(p)
9ij(2) = 8ij + O(l=[*)
Therefore
K(p) = Rm(e1, e2, 1, €2) = Ri212(0) = Ry (0)

(b) Using the above exercise 1, we have in geodesic normal coordinates

Jd o J o
*@FnJrﬁFm

Since the Chrystoffel symbols are given by

2
R121 =

L= igmk (Oigjk + 0jgir — Okgij)
Thus a formal explicit computations (at 0) give us that
0 0 1
K(p) = —@F% + ﬁpgl =3 (922,11(0) + g11,22(0) — 2912,12(0))

02
where g;; 1, means k3T Jij-

(c) On the other hand if we expand g;; near 0 we get

1 1
gij(x) = 65 + 591;’,11(961)2 + Gij, 127172 + 59@',22(332)2 +0(|z)?)

Now fix an r < R, then

A(r) = fl (e (915 (2)) 2 dar' da
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Thus if we insert the above expansion a straightforward calculation (expand also
the square root and only keep terms up to order 2) gives

A(r) = 7r? + %ZTA +O(r°)

where Z = —1 (911,11(0) + g11,22(0) + g22.11(0) + g22,22(0)).

(d) Now we want to show that K(p) = AZ for some number X. Let X = (X', X?)
be a tangent vector at 0. Denote with X the constant vectorfield X (z) := X‘e'.
Recall that near 0 the path

y(t) := (tXl, tX2)

is a geodesic. Note also that 4(t) = X. Then we get
0=Dyy= ﬁvk +4 (WA (OT5 (1) = A (0)F (0T ((1) = X' XITH((1))

Now if we differentiate the above equation at t = 0 we get a relation between the
first derivative of the Chrystoffel’s symbols. More precisely they are

911,11(0) = 0 = g22.22(0),  g11,22(0) = g22,11(0) = —2g12,12(0),
If we insert these relation in K (p) and in Z we get

3

1
K(p) = 5911,22(0)7 Z = —5911,22(0)

(e) We can now write

mK(p)
12

Now since A(r) = §i C(s)ds we get that C(r) = d%A(r). This give us the formula
for C(r).

A(r) := mr? — rt+ 0@)

4. Fix a pe M. By applying a translation on R? (isometry), we may assume that p = 0
and by a rotation (isometry), we may assume further, that the tangent plane 7),M
equals to {z = 0}. Now look at ¢ : M — R? : (z,y,2) — (x,y) and for 0 € M, we
have that d¢(0,0) is an isomorphism. Therefore by inverse function theorem, there is
a neighborhood in B,(0) € R? such that ¢! : B,(0) € R? — R3 is a diffeomorphism
onto its image. Hence over B,(0) there is a function u : B,(0) — R such that

f(x7y) = (a:,y,u(a:,y)) eM

for all (x,y) € B(0,0) and so we established that locally M is a graph over the first
two coordinates.
As a consequence, u(0,0) = 0, d,u(0,0) = dyu(0,0) = 0 and a local frame is given by

axf(SL‘, y) = (17 07 UI(.T, y)) ) ayf(xv y) = (07 1, uy(x, y))
With respect to this frame we get

g1 =1+ (u)?  gio=01wdu g =1+ (02f)?
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and therefore

a1911 = 2UzUzy a2911 = 2uxuxy
01912 = UggpTUy + UgZUzy 02012 = UgyTUy + UpTlyy
01922 = 2Uyly, 02022 = 2UyUzy

where u, = diu and u, = dyu. Therefore, Ffj (0,0) = 0. Hence,

1
K(p) = 5(5151912(07 0) — 0101922(0,0)) = g (0, 0)11y (0, 0) — 2, (0, 0)

which the determinant of the Hessian of v at (0,0). Since this matrix is diagonalizable,
the determinant is equal to the products of the two principal curvatures.

5. (a) Recall form exercise 4 d) of the previous exercise sheet that each geodesic v on
M defines a one parameter subgroup (a group homomorphism) 7, ) : R —
Isom(M), via

Tyt = Tx(t/2) © T(0)-
Let X be a parallel vector field along . We already proved that 7 ; is the isometry
that sends X (s) to X(t+s), but since X is parallel along v we conclude that dr,
acts as the parallel transport along 7. 7, ; is called transvections along v. Now
let pe M V € T,M and let v be the geodesic with initial velocity V. Now we can
consider 7, ; as the flow of a vector field: let ¢= : M x R — M defined by

¢t(Q) = T’y,t(Q)
then let X be the vectorfield defined by
0
X _ 13
(@) = ,¢'(9)

then X is a Killing fields with X (p) = V. Now let W € T,M, let §(s) be a path
starting at p with initial velocity W given by d(s) = exp,(sW). We have

DwX(p) = Dj4X(p)

where the last equation comes from the torsion free property of D. Since
0
=06 = dnw
Sls=0

and dry; acts like the parallel transport along « we conclude that the above
expression is 0.

(b) Let XY, Z be 3 Killing fields with DX (p) = DY (p) = DZ(p) = 0, then we have
R(X,Y)Z(p) = X, Y], Z](p)




