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1. (a) We already know that the hyperbolic upper half plane H is geodesically complete.
Then this is a consequence of the Hopf-Rinow theorem.

(b) This space is not geodesically complete. In this case, we can easily compute the
Christoffel symbols. Namely the only non-zero entry is Γ2

22px, yq “ ´
1
2
1
y

This gives us the geodesic equation for γ : RÑ Rˆ R`

:γ1 “ 0 :γ2 “
1

2γ2
p 9γ2q

2

The first equation gives γ1ptq “ at ` b. Requiring that γ1p0q “ 0 and 9γ1p0q “ 0,
we get γ1 “ 0.
Thus we now have to solve the second equation with 9γ2p0q “ ´1 and γ2 “ 1, for

which we know that its speed p 9γ2q2

γ2
ptq is constant and thus equal to 1. (This is

actually equivalent to our second equation.) Hence it is not difficult to solve this
new equation (by separation) to get the unique solution

γ2ptq “ p
t

2
´ 1q2.

But we see that this expression remains only non-zero for t ă 2 and we cannot
continue this geodesic any further. So this space is not geodesically complete.

2. Let γp be the integral curve at p P M of X. Assume that it is defined on a maximal
interval I and by short term existence of ODE, we know that I is open. So I “ pa, bq
for a, b P RYt˘8u. Since it is the integral curve of a Killing field we get that x 9γp, 9γpy
is constant on I. Assume that b ă 8.

ż b

0
x 9γp, 9γpy “ b x 9γppaq, 9γppaqy .

Therefore, γp can be extended on ra, bs via

γppbq :“ lim
tÑb

γpptq,

in the following way: Let ti be a sequence in I that converges to b P R. So ti is a
Cauchy sequence in I. Now consider the sequence γpptiq we get

dist pγpptiq, γpptjqq ď x 9γppaq, 9γppaqy |ti ´ tj |

whence γpptiq is a Cauchy sequence and one checks that γppbq is well defined. But then
b P I and we can extend γp to I Y pb, b` εq which is a contradiction to the maximality
of I.
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3. Assume that M is extendible and complete, then M can be considered as an open set
of a bigger manifold N . In particular M is open in the topology of N . Now let p be
a point of the boundary of M in N . Let ippq be the injectivity radius at p and let
Bippqppq be the open ball of radius ippq centered at p. Then exppB ippq

n

ppqq is open and

exppB ippq

n

ppqq XM is open and not empty for n P N. Take xn P exppB ippq

n

ppqq XM and

by construction xn Ñ p. Since it is convergent it is also a Cauchy sequence, and so by
completeness of M , we have p PM . This is a contradiction an so M “ N .

4. Consider R2z tp0, 0qu “ Cz tp0qu with its standard metric δ. Then its universal cover
is given by C together with the covering map

expp´q : CÑ C{ tp0qu
where exppzq :“ ez is the usual complex exponential map (no geodesics here ;)). Denote
with δ1 the pullback of δ with respect to expp´q. Then expp´q its a local isometry
between pC, δ1q and pCz tp0qu , δq. Now take an open small circle C in C{z tp0qu which
is tangent to 0. Its preimage is a disjoint union of connected open sets An P C for
n P Z. Let xi be a Cauchy sequence in C that converges to 0 (with respect to δ). Since
expp´q is a local isometry it preserves Cauchy sequences and so the preimage of xi in
An for a fixed n is another Cauchy sequence yi. Assume that yi converges to q P An.
Since expp´q induces an isometry

expp´q|An : An Ñ exppAnq

we conclude that exppqq “ 0 which is a contradiction. Thus yi is a Cauchy sequence
that doesn’t converge in C with respect to δ1.
We now show that pC, δ1q is non extendable. First note that the above covering map
can be written using real coordinates as f : R2 Ñ R2{ tp0, 0qu

fpx, yq :“ pex cos y, ex sin yq

and it is easy conclude that δ1 with respect to the real coordinates is given by

ex ¨ x´,´yR2 .

This metric has the following property: for any point p P R2 there exist exactly one
geodesic γ through p which cannot be extended on all R. ( All the other geodesics
are can be extended from R to R2). This fact can be proved a s follows: As locally
expp´q is an isometry, we know that locally geodecs on pC, δ1q are the inverse image
of geodesics on pCztp0, 0qu, δq, which are simply lines. Hence geodesics on pC, δ1q are
simply lifts of lines of pCztp0, 0qu, δq and there is exactly one incomplete direction that
hits p0, 0q. Alternatively, you can write down the geodesic equation and solve it.
Now assume that R2 is extendable and let M be a 2 dimensional Riemannian manifold
that contains R2. Let p be a point in the boundary of R2 in M . And let W be a
geodesically convex open neighborhood of p in M . Let q be a point of W X R2, let γ̃
be the geodesic connecting q with p. From the uniqueness above it turns out that γ̃
initially coincide with the geodesic γ through q which cannot be extended to all of R
(otherwise γ lies always in R2). Hence all the points on γ are in R2.
Now assume that you want to connect q with another point x of W not lying on γ̃,
it turns out that there is a geodesic γ1 connecting q with x and it is different from
γ̃. Thus by the discussion above this geodesic is completely contained in R2, and so
x P R2. Varying q P W X R2 gives you by the same argument that W ´ p Ă R2.
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Hence the boundary is discrete and hence R2 “ Mztpi : i P Iu. By Jordan’s Curve
theorem for R2, we know that any loop in R2 bounds a region diffeomorphic to the
disc and one unbounded component. Thus by running around one of the punctures
and applying this result, we see that there cannot be more than one puncture and that
M is diffeomorphic to the sphere S2 (but not necessarily isometric to the standard
round sphere) and call the puncture tpu. This is a compact manifold and hence it
has to have finite diameter suptdpx, yq : x, y PMu, whereas on pR2, δ1q the diameter is
infinite. (Lifts of radial lines have infinite length.) This is a contradiction and therefore
this example is not extendible.

5. (a) For any angle α we denote with Lα its ”lune”, i.e take two great circles starting
at the north pole and assume that the angle between is α, then consider the two
symmetric surfaces delimited, they are called lune and antipodal lune.
Let T be a triangle with angle α, β, γ, then there is a geometrical relation

ApLαq `ApLβq `ApLγq “ 4ApT q `ApS2q

where Ap´q means area of p´q. Since ApLαq “ 4α, ApS2q “ 4π the result follows.

(b) This can be verify geometrically. Draw the triangle T such that one of the edges
lies on the equator the it is easy show that the holonomy is precisely α`β`γ´π.

(c) This follows from aq and bq.

(d) Since the geometry is hyperbolic here (curvature is -1) we expected an area defect
formula, i.e.

α` β ` γ “ π ´A

Consider the Poincare disk model. An ideal triangle is a triangle centered in the
center of the disk such that the edges are tangents at the vertices. It turns out
that the angles are all equal zero. Then the above formula is true if the area of
the ideal triangle is π. This area can be calculates using integration.
The general case can be similarly proven using integration.
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